Francis Howell School District
 Mission Statement

Francis Howell School District is a learning community where all students reach their full potential.

Vision Statement

Francis Howell School District is an educational leader that builds excellence through a collaborative culture that values students, parents, employees, and the community as partners in learning.

Values

Francis Howell School District is committed to:

- Providing a consistent and comprehensive education that fosters high levels of academic achievement for all
- Operating safe and well-maintained schools
- Promoting parent, community, student, and business involvement in support of the school district
- Ensuring fiscal responsibility
- Developing character and leadership

Francis Howell School District Graduate Goals

Upon completion of their academic study in the Francis Howell School District, students will be able to:

1. Gather, analyze and apply information and ideas.
2. Communicate effectively within and beyond the classroom.
3. Recognize and solve problems.
4. Make decisions and act as responsible members of society.

Mathematics Graduate Goals

Upon completion of their mathematics study in the Francis Howell School District, students will be able to:

1. Communicate mathematically
2. Reason mathematically
3. Make mathematical connections
4. Use mathematical representations to model and interpret practical situations

Mathematics Rationale for Statistics

As the economics of world trade comes to depend more heavily on accurate and timely information, it becomes ever more important to have an understanding of statistics. In modern courtrooms, jurors are bombarded with language from the field of statistics. Credit, debt, sales, marketing, research, medicine, education, investments, politics, manufacturing, and other careers all make use of statistics and so, it is important to have some feel for how data is collected and how statistics are calculated and interpreted. Statistics is useful to many professions and permeates a wide variety of other areas of study. Statistics involves experiments, communication, and collaboration. The study of statistics contributes to the development of a well-rounded and informed critical thinker.

Course Description for Statistics

This course is an introduction to elementary statistics including a wide variety of applications. It is appropriate for many disciplines such as medicine, psychology, business, computer science, education, agriculture and engineering. TI -83 or higher graphing calculator is required

Curriculum Team

Keith Looten
Steve Willott

Secondary Content Leader
Keiren Greenhouse
Director of Student Learning
Chief Academic Office
Superintendent
Sharon Wall
Dr. Pam Sloan
Dr. Renee Schuster

Chapter/Concepts	Number of Days (including review and test)
SEMESTER	
Surveys - Chapter 12 Vocabulary; random number tables; sampling variability - simple random sample, convenience sample, other sampling	4
Experiments - Chapter 13 Observations versus experiment; causation	4
Data - Chapter 2 Vocabulary	4
Categorical Data - Chapter 3 Frequency; bar chart; histogram	4
Quantitative - Chapter 4 Histogram; stem-and-leaf	4
Distributions Numerically - Chapter 5 Measures of central tendency - mean, median; box plots; variation - standard deviation, IQR	
Standard Deviation - Chapter 6 Standardized scores - z scores; imperical rule (68 - 95 - 99.7)	4
Scatter plots, Association and Correlation - Chapter 7 Scatter plots - correlation coefficient	4
Linear Regression - Chapter 8 Least squares/line of best fit; interpretation of R^2	4
Probability and Probability Rules - Chapter 14 and Chapter l5 Vocabulary; Venn diagrams and set notation; tables; tree diagrams; addition rule; multiplication rule; complement rule; conditional probability - independent, dependent	4
Random Variables - Chapter 16 Single discrete random variables - mean, variance, standard deviation (no linear transformations)	4

Distribution Models - Chapter 18 Sampling distribution - mean, proportion; central limit theorem; standard error	4
Confidence Intervals - Chapter 19 One-proportion z-interval; margin of error; critical value; conditions for inference	4
Hypothesis Testing - Chapter 20 Alternative hypothesis; null hypothesis; one-proportion z-test; one-sided alternative; p-value; two-sided alternative	5
More about Tests - Chapter 21 Statistically significant; alpha level; significance; level; critical value	<1, often skipped or incorporated into other chapters
Comparing Two-Proportions - Chapter 22 Two-proportion z-interval; two-proportion z-test; conditions for inference	5
Inferences about Means - Chapter 23 T-distribution; degrees of freedom; one sample t-interval; one sample t-test for the mean	5

Instructional Support

Student Essential Vocabulary					
Data	Skew	Quantitative Variable	Distribution	Bar Chart	Matched Pairs
Pie Chart	Cluster	Conditional Distribution	Histogram	Stem-and-Leaf	Confounding
Categorical Variable	Symmetric	Outliers	Random	Simulation	Placebo Effect
Population	Sample	Sampling Frame	Census	Survey	Placebo
Statistic	Bias	Response Bias	Non-response Bias	Stratified	Double Blind
Systematic	Convenience	Variability	Observational Study	Prospective	Single Blind
Experiment	Factor	Level	Response Variable	Statistically Significant	Blinding
Marginal Distribution	Mean	Median	Mode	Range	Standard Deviation
Interquartile Range (IQR)	Spread	5 Number Summary	Variance	Box Plot	

Sample Learning Activities	Sample Assessments
Learning Activity \#1 : The data gives the total length in minutes of 25 music CDs. - Find the mean, median, standard deviation, and IQR of the length of the music CD's. - Determine any outliers. - Create a histogram or stem and leaf plot of the data. - Which measures of center and spread are appropriate? Solution: - \quad mean $=43.7$, median $=42.1$, standard deviation $=10.21$, IQR $=13.05$ - $\quad 76.3$ is an outlier - $\mathrm{IQR}=49.6-36.55=13.05$ - $(13.05)(1.5)=19.6$ - $\mathrm{Q} 3+19.6=49.6+19.6=69.2$ - $76.3>69.2$	Assessment \#1: The data gives a list of 30 heights of mathematics students. - Find the mean, median, standard deviation, and IQR of the length of the music CD's. - Determine any outliers. - Create a histogram or stem and leaf plot of the data. - Which measures of center and spread are appropriate? Solution - mean $=70.23$, median $=70$, standard deviation $=1.89, \mathrm{IQR}=$ 2 - There are no outliers - $\mathrm{IQR}=71-69=2$ - $(2)(1.5)=3$ - $\mathrm{Q} 3+3=71+3=74$ - $74 \leq 74$ - $\& Q 1-3=69-3=66$ - $66 \leq 67$

Students must state a conclusion in context. (i.e. "My simulation indicates that the batter struck out." Or "My simulation indicates that the batter walked.")

In situations where a simulation is used to estimate a mean or probability, students must also calculate the appropriate statistic. (i.e. the mean or proportion)

Example using line 1 in Stats: Modeling the World
"I choose 0-5 $=$ strike and $6-9=$ non-strike. And I'll pick numbers until the batter gets 3 strikes or 4 non-strikes.
9629907196
NNSNN |
Therefore, this batter walked, based on my simulation."

Activity's Alignment		
CONTENT	MA 3	Data analysis
PROCESS	3.2	Apply others’ strategies
	3.5	Reason logically (inductive/deductive)
DOK	2	
INSTRUCTIONAL	Generating and testing hypotheses	
STRATEGIES		

Students must state a conclusion in context. (i.e. "My simulation indicates the student got 3 out of 10 correct or 30% correct")

Example using line 1 in Stats: Modeling the World
"I choose $1=$ Correct answer and 2-5 $=$ Incorrect answers. I will ignore all digits 6-9 \& 0 , and will allow repeats. And I'll pick numbers until I've chosen 10 valid numbers.
96299071964864212063923185
NNINN NNCNN NNNII INNIN I I CNI |
Therefore, this student got 2 out of 10 or 20% on the quiz, based on my simulation."

Assessment's Alignment		
CONTENT	MA 3	Data analysis
PROCESS	3.2	Apply others's strategies
	3.5	Reason logically (inductive/deductive)
DOK	2	
LEVEL OF	Mastery	Level -70%
EXPECTATION		

Student Resources

Pearson/Addison Wesley; Stats: Modeling the World; © 2003, Bock, Velleman, DeVeaux; ISBN \# 0-13-187621-X

Chapter 1 - Stats Starts Here
Chapter 2 - Data
Chapter 3 - Displaying and Describing Categorical Data
Chapter 4 - Displaying Quantitative Data
Chapter 5 - Describing Distributions Numerically
Chapter 12 - Sample Surveys
Chapter 13 - Experiments and Observational Studies

Teacher Resources

Pearson/Addison Wesley; Stats: Modeling the World; © 2003, Bock, Velleman, DeVeaux

Identity Equity and Readiness			
Gender Equity		Technology Skills	
Racial/Ethnic Equity		Research/Information	
Disability Equity		Workplace/Job Prep	

Content Area: Mathematics	Course: Statistics	Strand: Data and Probability 2

Learner Objectives: Students will analyze and summarize data.

Concepts: A: Describe and analyze data
B: Represent and interpret data
C: Represent data algebraically
D: Analyze basic statistical techniques

Students Should Know	Students Should Be Able to
- Understand properties of a normal model - Represent and describe the relationship between bivariate data - Know central limit theorem is used to describe the sampling distribution of the mean - Know what a probability distribution is	- Compute summary statistics for quantitative data (MA 3, 3.3, DOK 2) - Measures of central tendency - Measures of spread - Correlation - \quad Calculate (MA 3, 1.6, DOK 2)

	the z-score of an observation 	normal probabilities parameters for the sampling distribution of the mean mean and standard deviation of a probability distribution

Instructional Support

Student Essential Vocabulary					
Center	Midrange	Median	Mean	Spread	Range
Interquartile Range (IQR)	Quartile	Percentile	Parameter	Statistic	Variance
Standard Deviation	Box Plot	Mode	Standardized Value	Z Score	Normal
$68-95-99.7$ Rule	Normal Probability Plot	Scatter Plot	Form	Direction	Strength
Outlier	Influential Point	Explanatory	Response	Correlation	Model
Causation	Regression	Association	Prediction	Residual	Residual Plot
Line of Best Fit	Slope	$\mathrm{R}^{\wedge} 2$	Extrapolation	Continuous	Discrete
Probability Model	Probability Distribution	Expected Value	Proportion	Sampling Distribution	Central Limit Theorem
Standard Error	5 Number Summary				

Sample Learning Activities

Learning Activity \#1 :

The data gives the total length in minutes of 25 music CDs.

42.1	33.6	45.0	38.2
56.7			
51.3	36.0	39.2	48.6
40.0			
28.5	32.5	52.3	46.2
37.1	29.4	38.6	52.9
45.0	2.3		
72.1	34.9	47.1	49.2
50.0			

- Find the mean, median, mode, range, standard deviation, 5 number summary, and IQR of the length of the music CD's.
- Determine any outliers.

Sample Assessments

Assessment \#1:

The data gives the number of wild turkeys in neighborhoods around a large urban area.
$\begin{array}{llllll}1 & 2 & 5 & 11 & 16 & 43\end{array}$

- Find the mean, median, mode, range, standard deviation, 5 number summary, and IQR of the length of the wild turkeys.
- Determine any outliers.
- What effect does the outlier have on the mean, median, and mode of this data?

Solution:

- What effect does the outlier have on the mean, median, and mode of this data?

Solution:

- \quad mean $=43.7$, median $=42.1$, mode $=42.1$ and $45($ bimodal $)$, range $=47.8$, standard deviation $=10.21, \mathrm{IQR}=13.05,5$ number summary: $\min =28.5, \mathrm{Q} 1=36.55$, median $=42.1$, Q3 $=49.6$, $\max =76.3$
- $\quad 76.3$ is an outlier
$\mathrm{IQR}=49.6-36.55=13.05$
$(13.05)(1.5)=19.6$
$\mathrm{Q} 3+19.6=49.6+19.6=69.2$
- $76.3>69.2$
- Data without outlier:
- mean $=42.4$; The outlier increased the mean by 1.3 min .
median $=42.1$; The outlier had no effect.
- mode $=42.1$ and 45; The outlier had no effect
$\bullet \quad$ mean $=13$, median $=8$, mode $=$ NO MODE, range $=42$, standard deviation $=15.76, \mathrm{IQR}=14,5$ number summary: $\min =1, \mathrm{Q} 1=2$, median $=8, \mathrm{Q} 3=16, \max =43$
- $\quad 43$ is an outlier
$\mathrm{IQR}=16-2=14$
$(14)(1.5)=21$
$\mathrm{Q} 3+21=16+21=37$
$43>37$
Data without outlier:
mean $=7$; The outlier increased the mean by 6 .
median $=5$; The outlier increased the median by 3 .
mode $=$ NO MODE; The outlier had no effect

Activity's Alignment		
CONTENT	MA 3	Data analysis
PROCESS	3.2	Apply others' strategies
	3.3	Apply one's own strategies
DOK	2	
INSTRUCTIONAL	Homework and practice	
STRATEGIES	Skills and processes	

Learning Activity \#2:

Assessment's Alignment		
CONTENT	MA 3	Data analysis
PROCESS	3.2	Apply others' strategies
	3.3	Apply one's own strategies
DOK	2	
LEVEL OF	Mastery Level - 80\%	
EXPECTATION		

Assessment \#2:

The table below lists the number of registered automatic weapons (in thousands), along with the murder rate (in murders per 100,000), for 8 randomly selected states from the United States. Use the data to answer the following questions.

Automatic

$\begin{array}{lllllllll}\text { Weapons (x) } & 11.6 & 8.3 & 3.6 & 0.6 & 6.9 & 2.5 & 2.4 & 2.6\end{array}$
Murder
$\begin{array}{llllllllll}\text { Rate (y) } & 13.1 & 10.6 & 10.1 & 4.4 & 11.5 & 6.6 & 3.6 & 5.3\end{array}$
a. What is the correlation coefficient?
b. What is the linear regression equation?

Solution:
a. $r=0.885$
b. equation: murder rate $=4.047+0.853$ (automatic weapons)

Activity's Alignment		
CONTENT	MA 3	Data analysis
PROCESS	$1.6 \quad$ Discover/evaluate relationships	
DOK	2	
INSTRUCTIONAL STRATEGIES	Identifying similarities and differences	

Learning Activity \#3

The mean IQ is normally distributed with a mean of 100 and a standard deviation of 15 .
a. What is the z -score for an individual with an IQ of 105 ?
b. What is the probability of getting an individual with an IQ above 105 ?

The table below lists the number of packs of cigarettes smoked, along with the life span (in years) from 8 randomly selected men from the United States. Use the data to answer the following questions.

Packs

Smoked 4.6	3.8	3.6	0.6	6.9	2.5	2.4	2.6

Life

$\begin{array}{lllllllll}\text { Span } & 48.3 & 54.8 & 53.9 & 63.1 & 50.8 & 58.3 & 57.7 & 56.0\end{array}$
a. What is the correlation coefficient?
b. What is the linear regression equation?

Solution:
a. $r=-0.873$
b. equation: life expectancy $=62.638+-2.156$ (packs smoked)

Assessment's Alignment		
CONTENT	MA 3	Data analysis
PROCESS	$1.6 \quad$ Discover/evaluate relationships	
DOK	2	
LEVEL OF EXPECTATION	Mastery Level -90%	

Assessment \#3

Corn production in a certain state is normally distributed with a mean of 13.7 million bushels a year and a standard deviation of 1.8 million bushels.
a. What is the z-score for an individual year with a production level of 15 million bushels?
c. Using the Central Limit Theorem, what are the mean and standard deviation for IQ of a group of 50 people?

Solution:
a. $\mathrm{z}=(105-100) / 15=0.33333333333333$
b. Using the calculator or table of standard normal probabilities, the probability is 0.3694
c. Mean is 100 , standard deviation is $\frac{15}{\sqrt{50}}=2.121$
b. What is the probability of getting an individual with a
production level of over 15 million bushels?
c. Using the Central Limit Theorem, what are the mean and standard deviation for corn production for a group of 5 years?

Solution:
a. $\quad \mathrm{z}=(15-13.7) / 1.8=0.72$
b. Using the calculator or table of standard normal probabilities, the probability is 0.2351
c. Mean is 13.7 , standard deviation is $\frac{1.8}{\sqrt{5}}=0.805$

Assessment's Alignment		
CONTENT	MA 3	Data analysis
PROCESS	$1.10 \quad$ Apply information, ideas and skills	
	$3.7 \quad$ Evaluate strategies	
DOK	2	
LEVEL OF	Mastery Level -80%	
EXPECTATION		

Assessment \#4

Find the mean and standard deviation for the following probability distribution:

X	$\mathrm{P}(\mathrm{x})$
3	.33
6	.21
9	.12
13	.31

Solution:
By hand or from calculator: Mean=7.59 and standard deviation $=4.161$
ore

Solution:
By hand or from calculator: Mean=6.63 and standard deviation $=4.105$

Activity's Alignment

Activity's Alignment		
CONTENT	MA 3	Data analysis
PROCESS	$1.10 \quad$ Apply information, ideas and skills	
	$3.7 \quad$ Evaluate strategies	
DOK	2	
INSTRUCTIONAL	Summarizing and note taking	
STRATEGIES		

Learning Activity \#4

Find the mean and standard deviation for the following probability distribution:

X	$\mathrm{P}(\mathrm{x})$
2	.33
5	.21
8	.15
12	.31

| Activity's Alignment | |
| :--- | :--- | :--- |
| CONTENT | MA 3 \quad Data analysis |
| PROCESS | $1.10 \quad$ Apply information, ideas and skills |
| DOK | 2 |
| INSTRUCTIONAL
 STRATEGIES | Homework and practice |

Assessment's Alignment		
CONTENT	MA 3	Data analysis
PROCESS	$1.10 \quad$ Apply information, ideas and skills	
DOK	2	
LEVEL OF EXPECTATION	Mastery Level -75%	

Student Resources	Teacher Resources
Pearson/Addison Wesley; Stats: Modeling the World; © 2003, Bock,	Pearson/Addison Wesley; Stats: Modeling the World; © 2003, Bock,
Velleman, DeVeaux; ISBN \# 0-13-187621-X	Velleman, DeVeaux
Chapter 6 - The Standard Deviation as a Ruler and the Normal Model	
Chapter 7 - Scatter Plots, Association, and Correlation	
Chapter 16 - Random Variables	
Chapter 18 - Sampling Distribution Models	

Identity Equity and Readiness			
Gender Equity		Technology Skills	
Racial/Ethnic Equity		Research/Information	
Disability Equity		Workplace/Job Prep	

Content Area: Mathematics

Learner Objectives: Students will draw conclusions based on a statistical model.

Concepts:

A:	Formulate questions
B:	Represent and interpret data
C:	Represent data algebraically

D: Develop and evaluate inferences

Students Should Know

- Know that they cannot fit linear models to a relationship between variables that are not linear
- Know that a confidence interval is an estimate of a population parameter
- Identify and use the alternative hypothesis when testing hypotheses

Students Should Be Able to

- Use regression to predict a value of y for a given x (MA 3, 3.5, DOK 2)
- Construct a confidence interval for (MA 3, 3.1, DOK 2)
- population mean
- population proportion
- difference of 2 proportions
- Calculate the margin of error or necessary sample size (MA 3,
3.1, DOK 2)
- \quad Perform a hypothesis test for (MA 3, 1.7, DOK 2)
- one proportion
- mean
- two proportion

Instructional Support

Student Essential Vocabulary					
Scatter Plot	Form	Direction	Strength	Outlier	Influential Point
Explanatory	Response	Correlation	Model	Causation	Regression
Association	Prediction	Residual	Residual Plot	Line of Best Fit	Slope
R^2 $^{\text {}}$	Extrapolation	Proportion	Confidence	Margin of Error	Critical Value
Independence	Confidence Level	Retain	Reject	Hypothesis	Null
P Value	One-sided	Two-sided	Test Statistic	Alternative	Statistically Significant
Significance Level	Alpha	Type I Error	Type II Error	Power	Comparing Two Proportions

Interval	Test	T-Distribution	Degrees of Freedom	Standard Error

a. Which of the variables is explanatory and which is the response?
b. Create a scatter plot for the data. Make sure to label your axes.
c. What is the correlation coefficient?
d. Based on the results for $b \& c$, would a linear model be a good fit? Explain.
e. What is the linear regression equation?
f. Using the equation in (e), what is your prediction for murder rate for a state with 10 thousand registered automatic weapons?

Solution:

a. Automatic weapons is the explanatory variable and the murder rate is the response variable.

Sample Assessments

Assessment \#1:

The table below lists the number of packs of cigarettes smoked, along with the life span (in years) from 8 randomly selected men from the United States. Use the data to answer the following questions.

Packs
$\begin{array}{llllllll}\text { Smoked } 4.6 & 3.8 & 3.6 & 0.6 & 6.9 & 2.5 & 2.4 & 2.6\end{array}$
Life
$\begin{array}{lllllllll}\text { Span } & 48.3 & 54.8 & 53.9 & 63.1 & 50.8 & 58.3 & 57.7 & 56.0\end{array}$
a. Which of the variables is explanatory and which is the response?
b. Create a scatter plot for the data. Make sure to label your axes.
c. What is the correlation coefficient?
d. Based on the results for $b \& c$, would a linear model be a good fit? Explain.
e. What is the linear regression equation?
f. Using the equation in (e), what is your prediction for life expectancy for someone who smokes 3 packs a day?

Solution:

a. Packs smoked is the explanatory variable and the life expectancy is the response variable.

DOK	2
INSTRUCTIONAL STRATEGIES	Nonlinguistic representations

PROCESS	1.10 3.5	Apply information, ideas, and skills Reason logically (inductive/deductive)
DOK	2	
LEVEL OF	Mastery Level -75%	
EXPECTATION		

Learning Activity \#2:

Of 92 adults selected randomly from one town, 68 have health insurance. Find a 90% confidence interval for the true population proportion of adults in town who have health insurance.

Solution: $(0.664,0.814)$ and the sample proportion is 0.739 , with margin of error 0.075.

Activity's Alignment		
CONTENT	MA 3	Data analysis
PROCESS	1.10	Apply information, ideas, and skills
	$3.1 \quad$ Identify and define problems	
	$3.3 \quad$ Apply one's own strategies	
DOK	2	
INSTRUCTIONAL	Generating hypotheses	
STRATEGIES		

Learning Activity \#3

A survey of shoppers is planned to see what percentage use credit cards. Find the minimum sample size you should use to have a confidence level of 95% and a margin of error of 0.02 .
a. Assume a prior study suggests 61% of shoppers use credit cards.
b. Assume we have no idea what percentage of shoppers might use credit cards.

Solution:

Assessment \#2:

Of 182 students selected randomly from one school, 130 drive. Find a 98% confidence interval for the true population proportion of students in school who drive.

Solution: $(0.636,0.792)$ and the sample proportion is 0.714 , with margin of error 0.078.

Assessment's Alignment		
CONTENT	MA 3	Data analysis
PROCESS	1.10	Apply information, ideas, and skills
	3.1	Identify and define problems
	3.3	Apply one's own strategies
DOK	2	
LEVEL OF	Mastery Level -75%	
EXPECTATION		

Assessment \#3

A survey of shoppers is planned to see what percentage use coupons. Find the minimum sample size you should use to have a confidence level of 95% and a margin of error of 0.03 .
a. Assume a prior study suggests 48% of shoppers use coupons.
b. Assume we have no idea what percentage of shoppers might use coupons.
a. $\quad \mathrm{n}=2285$
b. $\mathrm{n}=2401$

Solution:

a. $\quad \mathrm{n}=1066$
b. $\quad \mathrm{n}=1068$

Assessment's Alignment		
CONTENT	MA 3	Data analysis
PROCESS	1.10	Apply information, ideas, and skills
	3.1	Identify and define problems
	3.3	Apply one's own strategies
DOK	2	
LEVEL OF	Mastery Level -90%	
EXPECTATION		

Assessment \#4

SAT scores of 31 students with ESL are normally distributed with a mean of 898 and a standard deviation of 125 . At the 0.05 significance level, test the claim that their scores are different from the mean of 925 the rest of those taking the test receive.

Solution:
Ho: $\mathrm{mu}=925$
Ha: mu $\neq 925$
Two tailed $\mathrm{t}=-1.203$ or suitable sketch of symmetric density curve
p -value $=0.239$

Solution:

Ho: $\mathrm{mu}=300$
Ha: mu > 300
Right tailed $t=4.094$ or suitable sketch of symmetric density curve
p -value $=0.0009$
$\mathrm{p}<$ alpha, so we reject Ho.
ex

Activity's Alignment

CONTENT	MA 3	Data analysis
PROCESS	1.10	Apply information, ideas, and skills
	$3.1 \quad$ Identify and define problems	
	$3.3 \quad$ Apply one's own strategies	
DOK	2	
INSTRUCTIONAL	Cooperative learning	
STRATEGIES		

Learning Activity \#4

Tests on 12 television stands were originally tested and found to have a mean failure weight of 313 lbs with a standard deviation of 11 lbs . At the 0.01 significance level, test the manufacturers claim that their stands can hold more than 300 lbs .

The manufacturer's claim seems to be appropriate. (Or other non-definitive statement that one should believe that the stand should hold at least 300 lbs .)
$\mathrm{p}>$ alpha, so we fail to reject Ho.
There is not enough evidence to conclude that their scores are significantly different. (Or other non-definitive statement that one should believe that their scores do NOT vary significantly from the general population.)

Activity's Alignment		
CONTENT	MA 3	Data analysis
PROCESS	1.3	Design/conduct investigations
	1.5	Comprehend/evaluate resources
	1.7	Evaluate information
	3.3	Apply one's own strategies
	3.5	Reason logically (inductive/deductive)
DOK	3	
INSTRUCTIONAL	Identifying similarities and differences	
STRATEGIES		

Assessment's Alignment		
CONTENT	MA 3	Data analysis
PROCESS	1.3	Design/conduct investigations
	1.5	Comprehend/evaluate resources
	1.7	Evaluate information
	3.3	Apply one's own strategies
	3.5	Reason logically (inductive/deductive)
DOK	3	
LEVEL OF	Mastery Level -70%	
EXPECTATION		

Student Resources

Pearson/Addison Wesley; Stats: Modeling the World; © 2003, Bock, Velleman, DeVeaux; ISBN \# 0-13-187621-X

Chapter 8 - Linear Regression
Chapter 19 - Confidence Intervals for Proportions
Chapter 20 - Testing Hypotheses About Proportions

Teacher Resources

Pearson/Addison Wesley; Stats: Modeling the World; © 2003, Bock, Velleman, DeVeaux

Identity Equity and Readiness			
Gender Equity		Technology Skills	
Racial/Ethnic Equity		Research/Information	
Disability Equity		Workplace/Job Prep	

Content Area: Mathematics	Course: Statistics	Strand: Data and Probability 4
Learner Objectives: Students will apply rules of probability		

Concepts:	A: Apply basic concepts of probability
	B: Use and describe compound events

Students Should Know	Students Should Be Able to
- Know basic definitions and rules of probability - Know when events are disjoint or independent	- Apply (MA 3, 3.5, DOK 2) - addition rule - multiplication rule - complement rule - Calculate conditional probability (MA3, 3.5, DOK 2)

Instructional Support

Student Essential Vocabulary						
Event	Disjoint (Mutually Exclusive)	Independence	Probability	Expected Value	Discrete Random Variable	
Complement	Addition Rule	Multiplication Rule	Venn Diagram	Tree Diagram	Continuous Random Variable	

Solution:
a. \quad probability $=0.6231$
b. probability $=0.0627$
e. Are owning a TV and car independent of each other? Explain.

Solution:
a. \quad probability $=0.07$
b. \quad probability $=0.93$
c. \quad probability $=0.15$
d. \quad probability $=0.8590$
e. \quad No. $(0.82)(0.78) \neq 0.67$ or some other suitable explanation

Assessment's Alignment		
CONTENT	MA 3	Data analysis
PROCESS	1.10	Apply information, ideas and skills
	3.3	Apply one's owns strategies
	3.5	Reason logically (inductive/deductive)
	3.7	Evaluate strategies
DOK	3	
LEVEL OF	Mastery Level -70%	
EXPECTATION		

Assessment \#2:

a. Assuming the probability of having a boy is actually 51% rather than 50%, what is the probability of getting four boys in a row?
b. The probability of rolling a 7 or 11 in a craps game is $2 / 9$. What is the probability of not rolling a 7 or 11 ?

Solutions:
a. probability $=0.1327$
b. \quad probability $=7 / 9$

PROCESS	1.10	Apply information, ideas and skills			
	3.3	Apply one's owns strategies			
	3.5	Reason logically (inductive/deductive)			
	3.7	Evaluate strategies			
	2		CONTENT	MA 3	Data analysis
DOK	PROCESS	1.10	Apply information, ideas and skills		
		3.3	Apply one's owns strategies		
INSTRUCTIONAL	Homework and practice	3.5	Reason logically (inductive/deductive)		
STRATEGIES		3.7	Evaluate strategies		

Student Resources	Teacher Resources
Pearson/Addison Wesley; Stats: Modeling the World; © 2003, Bock,	Pearson/Addison Wesley; Stats: Modeling the World; © 2003, Bock,
Velleman, DeVeaux; ISBN \# 0-13-187621-X	Velleman, DeVeaux
Chapter 11 - Understanding Randomness	
Chapter 14 - From Randomness to Probability	
Chapter 15 - Probability Rules	

Identity Equity and Readiness			
Gender Equity		Technology Skills	
Racial/Ethnic Equity		Research/Information	
Disability Equity		Workplace/Job Prep	

