Francis Howell School District
 Mission Statement

Francis Howell School District is a learning community where all students reach their full potential.

Vision Statement

Francis Howell School District is an educational leader that builds excellence through a collaborative culture that values students, parents, employees, and the community as partners in learning.

Values

Francis Howell School District is committed to:

- Providing a consistent and comprehensive education that fosters high levels of academic achievement for all
- Operating safe and well-maintained schools
- Promoting parent, community, student, and business involvement in support of the school district
- Ensuring fiscal responsibility
- Developing character and leadership

Francis Howell School District Graduate Goals

Upon completion of their academic study in the Francis Howell School District, students will be able to:

1. Gather, analyze and apply information and ideas.
2. Communicate effectively within and beyond the classroom.
3. Recognize and solve problems.
4. Make decisions and act as responsible members of society.

Mathematics Graduate Goals

Upon completion of their mathematics study in the Francis Howell School District, students will be able to:

1. Communicate mathematically
2. Reason mathematically
3. Make mathematical connections
4. Use mathematical representations to model and interpret practical situations

Mathematics Rationale for AP Statistics

In today's global and technological society, production and consumption of data continues to increase, necessitating statistical literacy skills of reading, analyzing and interpreting data. Today's citizens must possess an understanding of data in order be a viable part of our world. As information travels with greater speed, statistics empowers us to make better, more accurate and faster decisions affecting multiple facets of our lives. Statistical analysis plays a key role in the fields of psychology, sociology, education, health-related professions, mathematics, physical and life sciences as well as in business, computer sciences and more. AP Statistics provides students with the necessary skills and meaningful applications to compete in today's society.

Course Description for Statistics

Students will study the major concepts and tools for collecting, analyzing, and drawing conclusions from data. The four broad conceptual themes are: exploring data, planning study, anticipating patterns, and statistical inference. TI-83 Graphing calculator or higher is required

Curriculum Team

Keith Looten
Steve Willott

Secondary Content Leader Director of Student Learning Chief Academic Office
Superintendent

Keiren Greenhouse
Travis Bracht
Dr. Pam Sloan
Dr. Renee Schuster

Curriculum Map (organized by chapters in primary textbook):

[^0]Chapter 6: Probability: The Study of Randomness (8 days-one test)
6.1: The Idea of Probability
6.2: Probability Models
6.3: General Probability Rules

Chapter 7: Random Variables (7 days-one test)
7.1: Discrete and Continuous Random Variables
7.2: Means and Variances of Random Variables

End of First Semester (Comprehensive Semester Exam)

Chapter 8: The Binomial and Geometric Distributions (10 days-one test)
8.1: The Binomial Distributions
8.2: The Geometric Distributions

Chapter 9: Sampling Distributions (12 days-one test) Sampling Distribution Project (see attached)
9.1: Sampling Distributions
9.2: Sample Proportions
9.3: Sample Means

PART IV: Inference: Conclusions with Confidence
Chapter 10: Introduction to Inference (8 days-one test)
10.1: Estimating with Confidence
10.2: Tests of Significance
10.3: Making Sense of Statistical Significance
10.4: Inference as Decision

Chapter 11: Inference for Distributions (11 days-one test)
11.1: Inference for the Mean of a Population
11.2: Comparing Two Means

Chapter 12: Inference for Proportions (8 days-one test)
12.1: Inference for a Population Proportion
12.2: Comparing Two Proportions

Chapter 13: Inference for Tables: Chi-Square Procedures (7 days-one test)
13.1: Test for Goodness of Fit
13.2: Inference for Two-Way Tables

Chapter 14: Inference for Regression (4 days-one test)
14.1: Inference about the Model
14.2: Predictions and Conditions

End of AP test material (Comprehensive Semester Exam)

Content Area: Mathematics	Course: AP Statistics	Strand: Data and Probability 1
Learner Objectives: Students will explore data by describing patterns and departures from patterns.		

Concepts:	A:	Construct and interpret graphical displays of distributions of univariate data
	B:	Summarize distributions of univariate data
	C:	Compare distributions of univariate data

Students Should Know	Students Should Be Able to
The effect of changing units on summary	\bullet Identify appropriate center and spread (IA1)
measures	\bullet Identify outliers and other unusual features (IA2)
\bullet •How shape determines the appropriate measures of center and spread	• Assess shape including any cluster and gaps (IA3)
	\bullet Calculate center: median, mean (IB1)
	\bullet Calculate spread: range, interquartile range, standard deviation (IB2)
	\bullet Identify measures of position: quartiles, percentiles, standardized scores
	(z-scores) (IB3)
	• Create boxplots and use them to compare distributions (IB4)
	\bullet Select the appropriate graphical display (IC1, IC2, IC3, IC4)

Instructional Support

Student Essential Vocabulary						
Data	Parameter	Population	Sample	Statistic(s)	Outlier(s)	
Quantitative Variable	Standardized Value	Transformations	Variability	Z Score	Extrapolation	
Transforming Data	Proportion	5 Number Summary	$68-95-99.7$ Rule	Bimodal	Boxplot	

Center	Degrees of Freedom	Distribution	Dotplot	Expected Value	Histogram
Interquartile Range (IQR)	Mean	Median	Midrange	Mode	Normal
Percentile	Quartile	Range	Shape	Skew	Spread
Standard Deviation	Standard Normal Model	Stem-and-Leaf	Symmetric	Tails	Time Plot
Uniform	Unimodel	Variance			

speed of roller coasters at the various parks. Use comparative language to compare the collections of rides at these parks.
duration of roller coasters at the various parks. Use comparative language to compare the collections of rides at these parks.

Make box plots to compare the
length of roller coasters made of steel vs. those made of wood. Use comparative language to compare the rides made of these materials.
height of roller coasters made of steel vs. those made of wood. Use comparative language to compare the rides made of these materials.
speed of roller coasters made of steel vs. those made of wood. Use comparative language to compare the rides made of these materials.
duration of roller coasters made of steel vs. those made of wood. Use comparative language to compare the rides made of these materials.

Make boxplots to compare the
length of the type of roller coasters (sit down, inverted, stand up, etc.). Use comparative language to compare the types of rides.
height of the type of roller coasters (sit down, inverted, stand up, etc.). Use comparative language to compare the types of rides.
speed of the type of roller coasters (sit down, inverted, stand up, etc.). Use comparative language to compare the types of rides.
duration of the type of roller coasters (sit down, inverted, stand up, etc.). Use comparative language to compare the types of rides.

Solution:
See Appendix

Activity's Alignment

$>$ Construct an appropriate graph of the distribution and describe its shape, center, and spread.

or other appropriate graphical display. The shape is skewed right, with a couple of outliers to the right.

The center would be the median of 37.8 with IQR of $60.1-21.5=38.6$.

Assessment's Alignment	
CONTENT	MA3 \quad Data analysis

CONTENT	MA3	Data analysis
PROCESS	$1.8 \quad$ Organize data and ideas	
DOK	$2 \quad$ Skill/concept	
INSTRUCTIONAL STRATEGIES	Nonlinguistic representation	

Learning Activity \#2:

Death Rate See Appendix

With your 1.69 oz . bag of M\&Ms; carefully dump them onto your desk. The ones that land with the \mathbf{M} side up have an incurable Malady and have passed away. Count the number that have the Malady and the total number in your package and calculate the death rate (to the nearest whole percent).

Record your death rate here:

Mark the appropriate chart with the death rate.

Count the number of each color of M\&M and record them below

Red	Orange	Yellow	Green	Blue	Brown	Totals

Mark the appropriate chart with the count for each color from your bag.

PROCESS	1.8	Organize data and ideas
DOK	2	Skill/concept
LEVEL OF EXPECTATION	Mastery Level -85%	

Assessment \#2:

The following data represent scores of 50 students on a calculus test.

72	72	93	70	59	78	74	65	73
80	57	67	72	57	83	76	74	56
68	67	74	76	79	72	61	72	73
76	67	49	71	53	67	65	100	83
69	61	72	68	65	51	75	68	75
66	77	61	64	74				

> Construct an appropriate graph of the distribution and describe its shape, center, and spread.

Solutions may vary:

or other appropriate graphical display. The shape is roughly symmetric, with possible outliers to the right.

Distributions of data should always address four things：Shape，
Center，Spread and possibly Outliers（SOCS）．
For the class data collected，record the values you feel best represent the above．

Shape Center Spread Any Outliers？
Death Rate
Red
Orange
Yellow
Green
Blue
Brown
Total No．

Sample solutions：
See Appendix

Activity＇s Alignment

Activity＇s Alignment		
CONTENT	MA3	Data analysis
PROCESS	1.8	Organize data and ideas
DOK	2	Skill／concept

1-W証 St.\Xit.s
1-W証 St.\Xit.s
x=6.9.94
x=6.9.94
\x=3497
\x=3497
\sum<2=249071
\sum<2=249071
Sx=9.573.56867.
Sx=9.573.56867.
\sigmax=9.477151471
\sigmax=9.477151471
+7=56
+7=56

サr=50
サr=50
min<=49
min<=49
01=6.5
01=6.5
Med=71.5
Med=71.5
03=75
03=75
mGXX=160
mGXX=160

The center would best be described by the mean of 69.94 and the spread would best be described by the standard deviation of approximately 9.57 ．
＞What would happen to the measure of center and spread if the teacher added five extra points to everyone＇s grade？

Solution：
The measure of center would increase by 5 and the measure of spread would remain the same．
$>$ What would happen to the measure of center and spread if the teacher doubled everyone＇s score？

Solution：The measure of center and spread would both be doubled．

Assessment＇s Alignment		
CONTENT	MA3	Data analysis
PROCESS	1.8	Organize data and ideas
DOK	2	Skill／concept
LEVEL OF EXPECTATION	Mastery Level -85%	

```
INSTRUCTIONAL Nonlinguistic representation
```

```
STRATEGIES
```

Student Resources	Teacher Resources
The Practice of Statistics	The Practice of Statistics; Yates, Moore, Starnes; Freeman; ©2003; ISBN \# 0-7167-4773-1

Identity Equity and Readiness			
Gender Equity		Technology Skills	
Racial/Ethnic Equity		Research/Information	
Disability Equity		Workplace/Job Prep	

Content Area: Mathematics	Course: AP Statistics	Strand: Data and Probability 2

Learner Objectives: Students will explore data by describing patterns and departures from patterns

Concepts: D: Explore bivariate data

Students Should Know

- Limitations of correlations and when correlation is appropriate
- How to calculate least-squares regression line
- How to create residual plots, outliers, and influential points

Students Should Be Able to

- Analyze patterns in scatterplots (ID1)
- Interpret correlation (ID2)
- Assess linearity (ID2)
- Use least-squares regression for predictions (ID3)
- Interpret residual plots, outliers, and influential points (ID4)
- Perform transformations to achieve linearity: logarithmic and power transformations (ID5)

Instructional Support

Student Essential Vocabulary										
Data	Parameter	Population	Sample	Statistic(s)	Outlier(s)					
Quantitative Variable	Transformations	Transforming Data	Variability	Z Score	Association					
Standardized Value	Causation	Central Limit Theorem	Direction	Explanatory	Form					
Exponential Model	Influential Point	Intercept	Line of Best Fit	Linear Model	Lurking Variables					
Coefficient of Determination (R^2)	Correlation Coefficient (r)	Model	Power Model	Predicted Value						
Least Squares Regression (LSRL)	Prediction	Regression	Regression Outliers	Residual						
Regression to the Mean		Residual Plot	Response	Response Variable	Scatterplot					
Slope (Rate of Change)		Strength	Ladder of Powers	Logarithmic Model	Monotonicity					
Subset										

Learning Activity \＃1 ：

Modeling the Spread of a Disease

A disease in a community may begin with 1 person，who then spreads the disease to a friend or acquaintance．Eventually，each person may spread the disease to other people．This process continues until there is some intervention to interrupt the spread of the disease or until the patient dies．In this activity，you will simulate the spread of disease in a community．

1．The first student（present）on my alphabetical class list will represent the first infected person．That person moves to one side of the room and rolls a die（singular of dice）repeatedly，with each roll representing a unit of time． The number 5 will signal a transmission of the disease to another uninfected person．When a 5 is rolled，a new student is chosen from the class to receive a die and represent an additional infected person．This additional person joins the first student so that there are now 2 infected individuals at one side of the room，perhaps a corner or at the front．

2．As the die is rolled，everyone should plot points on the graph on the other side of this paper．＂Time＂is marked as the explanatory variable on the horizontal axis and＂number of infected people＂is marked as the response variable on the vertical axis．The points that everyone graphs will form a scatter plot．

3．At the signal from the teacher，each＂infected person＂will roll his or her die．If anyone rolls a 5 ，a new student will be chosen from the class to join the group of infected people．For each new 5，a new person becomes ＂infected＂（so if 2 students roll $5 \mathrm{~s}, 2$ additional students are selected for that time period，if no one rolls a 5，that＇s a period of time，but with no additional disease transmission）．After each signal from the teacher to roll the die／dice， the class counts the number of infected individuals and plots a point for that year．The simulation continues until all students in the class have become ＂infected＂．

4．Bring your data back to class tomorrow and think about this：

Assessment \＃1：

The Great Plains Railroad is interested in studying how fuel consumption is related to the number of railcars for its trains on a certain route between Oklahoma City and Omaha．A random sample of 10 trains on this route has yielded the data in the table below．

\＃of Railcars	20	20	37	31	47	43	39
	50	40	29				
Fuel Cons．	58	52	91	80	114	98	87
1	22	100	70				
（units／mile）							
$\quad>$							

Solution：The scatter plot of the data shows a relatively strong positive， seemingly linear relationship．The correlation $(r=0.9836)$ ，coefficient of determination（ $R^{2}=96.7 \%$ ）and having no discernable pattern in the residual plot all support a linear relationship

LinRegTTest ＇븤ㅋㅂ

 $\mathrm{F}=3,1466791 \mathrm{E}-7$
析 $=6$ $\downarrow \cdot=10.67677181$

LinRe9TTest． $\stackrel{y}{4}=9+b x$ B＝ $+6=2.14958692$

ト＝－GBSK心18

to protecting certain species and to ensuring the safety of surrounding human populations. In addition, it is sometimes possible to monitor certain characteristics of the animals. The length of an alligator can be estimated quite accurately from aerial photographs or from a boat. However, the alligator's weight is much more difficult to determine. ("YOU weigh him." "No, YOU weigh him!")

Length (in)	Weight (lbs)
58	2.8
61	44
63	33
68	39
69	36
72	38
72	61
74	54
74	51
76	42
78	57
82	80
85	84
86	80
85	84
86	90
88	70
89	84
90	106
90	102
94	110
94	130
114	197
128	366

In the example below, data on the length (in inches) and weight (in pounds) of alligators captured in central Florida are given. Your task is to develop a model from which the weight of an alligator can be predicted from its length.

Year	Vehicles	Year	Vehicles
1940	32.4	1965	90.4
1945	31.0	1970	108.4
1950	49.2	1975	132.9
1955	62.7	1980	155.8
1960	73.9	1985	171.7

$>$ Create an appropriate regression equation to represent the data. (The number for 1945 is an outlier. Why might it be an outlier? You may delete it.)

Solution: With the outlier removed (probably due to WWII), the scatter plot of the data shows a relatively strong positive, possibly non-linear relationship. While the correlation $(\mathrm{r}=0.9850)$ and coefficient of determination ($R^{2}=97.0 \%$) are both relatively strong, the residual plot has a clear pattern, meaning the linear relationship is NOT appropriate.

The Report．Describe your investigation in a report．Tell the story，from the introduction to the analysis to the conclusions with all of the necessary supporting calculator screen shots or computer plots and numerical summaries．In particular，write your report so that the reader can follow your reasoning as you proceed through your investigation．Follow the conventions as described in the general guidelines for writing up Special Problems．

Sample Solution：
power $\operatorname{LinReg}(\mathrm{ax}+\mathrm{b}) \mathrm{L}^{3}, \mathrm{~L} 4$

The ratios from 1950 on $(0.785,0.848,0.817,0.834,0.816,0.853$ ，and 0.907 ）indicate an exponential model may be appropriate．The scatter plot of the transformed data shows a relatively strong，positive， seemingly linear relationship．The correlation（ $\mathrm{r}=0.9970$ ），coefficient of determination（ $R^{2}=99.4 \%$ ）and having no discernable pattern in the residual plot all support a linear relationship（Although the last point may be an outlier and other methods learned in this class show no improvement to the model）．

 ＇y＝ $9+6 x$ $+6=-61636725$ E＝． 01996291 $r^{-2}=996974225$ $r=.996994958$

```
LiヶREヨTTEミt．
－\(-=3+6 \times\)
B干
\(t=34,0465227\)
F＝4． \(847955 \mathrm{E}-9\)
－ \(\mathrm{f}=7\)
\(+9=-36.24059862\)
```


Therefore the LSRL on the transformed data is
\log vehicle registration $=-30.2406+0.0164($ Year $)$

Which yields an exponential regression model：
vehicle registration $=10^{-30.2406} \mathrm{~g} 0^{0.0164(\text { Year })}$
L^{3} is \log (length), L^{4} is \log (weight)
$y=10^{\log x^{3.286}-4.42}$
$y=10^{\log x^{3.286}} \cdot 10^{-4.42}$ since that 3.286 is an exponent on the x

Assessment's Alignment		
CONTENT	MA3	Data analysis
PROCESS	1.10	Apply information, ideas and skills
DOK	3	Strategic Thinking
LEVEL OF EXPECTATION	Mastery level -80%	

Activity's Alignment

Activity's Alignment		
CONTENT	MA3 CA 1	Data analysis Speaking and writing English
PROCESS	1.10	Apply information, ideas and skills
DOK	3	Strategic Thinking
INSTRUCTIONAL STRATEGIES	Summarizing and note taking	

Student Resources	Teacher Resources
The Practice of Statistics	The Practice of Statistics; Yates, Moore, Starnes; Freeman; ©2003; ISBN \# 0-7167-4773-1

Identity Equity and Readiness			
Gender Equity		Technology Skills	
Racial/Ethnic Equity		Research/Information	
Disability Equity		Workplace/Job Prep	

Content Area: Mathematics	Course: AP Statistics	Strand: Data and Probability 3
Learner Objectives: Students will explore data by describing patterns and departures from patterns		

Concepts: E: Explore categorical data

Students Should Know	Students Should Be Able to
\bullet	How to select appropriate relative frequency
\bullet	Features of graphical displays that indicate an association between two
variables	\bullet Construct and interpret frequency tables and bar charts (IE1)
	- Calculate marginal and joint frequencies for two-way tables (IE2)
	• Colculate conditional relative frequencies and association (IE3)

Instructional Support

Student Essential Vocabulary					
Data	Parameter	Population	Sample	Statistic(s)	Extrapolation
Proportion	Bar Chart	Categorical Variable	Conditional Distribution	Contingency Table	Frequency Table
Marginal Distribution	Pie Chart	Simpson's Paradox			

Sample Learning Activities				
Learning Activity \#1: A simple random sample of adults living in a suburb of a large city was selected. The age and annual income of each adult in the sample were recorded. The resulting data are summarized in the table below.				
Annual Income				
Age Category	$\begin{gathered} \$ 25,000- \\ \$ 35,000 \end{gathered}$	$\begin{gathered} \$ 35,001- \\ \$ 50,000 \end{gathered}$	$\begin{gathered} \text { Over } \\ \$ 50,000 \end{gathered}$	Total
21-30	8	15	27	50
31-45	22	32	35	89
46-60	12	14	27	53
Over 60	5	3	7	15
Total	47	64	96	207

What is the probability that a person chosen at random from those in this sample will be in the 31-45 age category?

What is the probability that a person chosen at random from those in this sample whose incomes are over $\$ 50,000$ will be in the 31-45 age category? Show your work.

Based on your answers to the previous questions, is annual income independent of age category for those in the sample? Explain.

Solution:
$\mathrm{P}($ age $31-45)=\frac{\frac{89}{207}}{}=0.42995$

Sample Assessments

Assessment \#1:

In a 1980 study, researchers looked at the relationship between the type of college (public or private) attended by 3265 members of the class of 1960 who went into industry and the level of job each member had in 1980. The results were:

Management Level	Public	Private
High	75	107
Middle	962	794
Low	732	595
\quad (Compute the marginal counts.		

Solution:

Management Level	Public		Private	Totals
	75	107	182	
Middie	962	794	1756	
Low	732	595	1327	
Totals	1769	1496	3265	

Compute the conditional distributions of management level given college type (in percents). [Write the numbers next to the counts in the above table.]

Solution:

Management Level	Public\%	Private\%
High	4.24	7.15
Middle	54.38	53.07
Low	41.38	39.77

$P($ age 31-45/income over 50,000$)=\frac{35}{96}=0.36458$
If annual income and age were independent, the probabilities in the questions above would be equal. Since these probabilities are not equal, annual income and age category are not independent for adults in this sample.

> Construct a segmented bar graph

Solution:

$>$ Comment on the observed relationship.
Solution: The percent of graduates that went into low or middle management jobs was about the same for public and private schools. But significantly more private college graduates went into high level management jobs than the public college grads.

Assessment's Alignment		
CONTENT	MA3	Data analysis
PROCESS	1.10	Apply information, ideas, and skills
DOK	3	Strategic Thinking

INSTRUCTIONAL	Summarizing and note taking
STRATEGIES	

Learning Activity \#2:

The ELISA tests whether a patient has contracted HIV. The ELISA is said to be positive if it indicates that HIV is present in a blood sample, and the ELISA is said to be negative if it does not indicate that HIV is present in a blood sample. Instead of directly measuring the presence of HIV, the ELISA measures levels of antibodies in the blood that should be elevated if HIV is present. Because of variability in antibody levels among human patients the ELISA does not always indicate the correct result.

As part of a training program, staff at a testing lab applied the ELISA to 500 blood samples known to contain HIV. The ELISA was positive for 489 of those blood samples and negative for the other 11 samples. As part of the same training program, the staff also applied the ELISA to 500 other blood samples known to not contain HIV. The ELISA was positive for 37 of those blood samples and negative for the other 463 samples.

When a new blood arrives at the lab, it will be tested to determine whether HIV is present. Using the data from the training program, estimate the probability that the ELISA would be positive when it is applied to a blood sample that does not contain HIV.

Among the blood samples examined in the training program that provided positive ELISA results for HIV, what proportion actually contained HIV?

When a blood sample yields a positive ELISA result, two more ELISAs are performed on the same blood sample. If at least one of the two additional ELISAs is positive, the blood sample is subjected to a more expensive and more accurate test to make a definitive determination of whether HIV is present in the sample. Repeated ELISAs on the same sample are generally assumed to be independent. Under the assumption of independence, what is

LEVEL OF
 EXPECTATION
 Mastery level-75\%

Assessment \#2:

The following data are the survival rates of the passengers and crew for the Titanic.

	First	Second	Third	Crew	TOTAL
Lived	202	118	178	212	$\mathbf{7 1 0}$
Died	123	167	528	673	$\mathbf{1 4 9 1}$
TOTAL	$\mathbf{3 2 5}$	$\mathbf{2 8 5}$	$\mathbf{7 0 6}$	$\mathbf{8 8 5}$	$\mathbf{2 2 0 1}$

$>$ What $\%$ of those aboard were $1^{\text {st }}$ class passengers?

Solution

$$
\frac{325}{2201}=14.8 \%
$$

- What $\%$ of those aboard survived?

Solution:

$$
\frac{710}{2201}=32.3 \%
$$

$>$ Of those in $1^{\text {st }}$ class what $\%$ survived?

Solution

$$
\frac{202}{325}=62.2 \%
$$

$>$ Of those that survived, what $\%$ was 1 st class?

Solution: $\quad \frac{202}{710}=28.5 \%$
the probability that a new blood sample that comes into the lab will be subjected to the more expensive test if that sample does not contain HIV?

Solution:
The estimated probability of a positive ELISA if the blood sample does not have HIV present is
$\frac{37}{500}=0.074$
A total of $489+37=526$ blood samples resulted in a positive ELISA. Of these, 489 samples actually contained HIV. Therefore the proportion of samples that resulted in a positive ELISA that actually contained HIV is $\frac{489}{526} \approx 0.9297$

The probability that the ELISA will be positive, given that the blood sample does not actually have HIV present, is 0.074 . Thus, the probability of a negative ELISA, given that the blood sample does not actually have HIV present, is $1-0.074=0.926$

P(new blood sample that does not contain HIV will be subjected to the more expensive test)
$=\mathrm{P}\left(1^{\text {st }}\right.$ ELISA positive and $2^{\text {nd }}$ ELISA positive OR $1^{\text {st }}$ ELISA positive and $2^{\text {nd }}$ ELISA negative and $3^{\text {rd }}$ ELISA positive/HIV not present in blood)
$=P\left(1^{\text {st }}\right.$ ELISA positive and $2^{\text {nd }}$ ELISA positive/HIV not present in blood $)+$
P($11^{\text {st }}$ ELISA positive and $2^{\text {nd }}$ ELISA negative and $3^{\text {rd }}$ ELISA positive/HIV not present in blood)
$=(0.074)(0.074)+(0.074)(0.926)(0.074)$
$=0.005476+0.005070776$
$=0.010546776$
≈ 0.0105
OR
$\mathrm{P}\left(1^{\text {st }}\right.$ ELISA positive and not both the $2^{\text {nd }}$ and $3^{\text {rd }}$ are negative $)$
> What $\%$ of those aboard were $1^{\text {st }}$ class passengers that survived?
Solution: $\quad \frac{202}{2201}=9.2 \%$

$\begin{aligned} & =(0.074)\left(1-0.926^{2}\right) \\ & =(0.074)(0.142524) \\ & =0.010546776 \\ & \approx 0.0105 \end{aligned}$	
Activity's Alignment	
CONTENT	MA3 Data analysis
PROCESS	1.10 Apply information, ideas and skills
DOK	3 Strategic Thinking
INSTRUCTIONAL STRATEGIES	Homework and practice

Assessment's Alignment		
CONTENT	MA3	Data analysis
PROCESS	1.10	Apply information, ideas and skills
DOK	3	Strategic Thinking
LEVEL OF EXPECTATION	Mastery level - 90\%	

Student Resources	Teacher Resources
The Practice of Statistics	The Practice of Statistics; Yates, Moore, Starnes; Freeman; ©2003; ISBN \# 0-7167-4773-1

Identity Equity and Readiness			
Gender Equity		Technology Skills	
Racial/Ethnic Equity		Research/Information	
Disability Equity		Workplace/Job Prep	

Content Area: Mathematics	Course: AP Statistics	Strand: Data and Probability 4

Learner Objectives: Students will sample and experiment by planning and conducting a study.

Concepts: B: Plan and conduct surveys

Students Should Know	Students Should Be Able to
• Characteristics of a well-designed and well-conducted survey	• Create an SRS for surveys (IIB)
\bulletDifferences between populations, samples, and methods of random selection	\bullet Identify potential problems resulting from samples and surveys (IIB)
- Sources of bias in sampling and surveys	

- \quad Sampling methods, including simple random sampling, stratified random sampling, and cluster sampling

Instructional Support

Student Essential Vocabulary						
Data	Parameter	Population	Sample	Statistic(s)	Variability	
Random	Simulation	Bias	Random Selection	Census	Cluster	
Convenience	Stratified	Multistage Design	Non-response Bias	Response Bias	Sampling Frame	
Survey	Systematic	Undercoverage	Voluntary Response			

Sample Learning Activities	Sample Assessments
Learning Activity \#1:	Assessment \#1:
Survey	A university's financial aid office wants to know how much it can expect students to earn from summer employment. This information will be used to set the level of financial aid. The population contains 3,478 students who have completed at least one year of study but have not yet graduated. A questionnaire will be sent to an SRS of 100 of these students, drawn from an alphabetized list.
Fill out the survey. See Appendix	
Gender: Male _ Female _-	
Eye color:	

```
Height:
```

\qquad

``` (inches)
Birth Date:
``` \(\qquad\)
```

Left/Right Handed?

``` \(\qquad\)
```

Amount of sleep you got last night:

``` \(\qquad\)
``` hours
Ounces of soda consumed yesterday:
``` \(\qquad\)
\(\qquad\)
```

Favorite Delivery Pizza:

``` \(\qquad\)
``` \(-\)
ACT Math Score:
ACT Composite Score:
``` \(\qquad\)
```

GPA:

``` \(\qquad\)
```

\# of Honors Classes you are enrolled in this semester:

``` \(\qquad\)
``` Pulse rate:
``` \(\qquad\)
``` beats/minute (See Activity 1 on page 4 of Stats book)
Survey sample solution
\begin{tabular}{ll} 
Gender: & M \\
Eye color: & blue \\
Height: & 73 inches \\
Birth Date: & \(3-14-1960\) \\
Handed: & Right \\
Amount of sleep last night: & 8 hours \\
Ounces of soda consumed: & 0 \\
Favorite Delivery Pizza:Fox's & \\
ACT Math Score: & 32 \\
ACT Composite Score: 31 & \\
GPA: & 3.97 \\
\# of honors classes: & 3 \\
Pulse Rate: & 84
\end{tabular}
```


Pulse Rate:

1. Which variables are categorical and which are quantitative?
2. What are some biases that might be present?
Don't know some answers, may lie, may not do arithmetic correct
3. Why might a question about weight be biased?
4. Which variables could we make a bar chart from?
5. Which variable could we make a pie chart from?
6. Are any of the variables linked?
```
\(>\) Describe how you will label the students in order to select the sample.

Solution: Answers may vary. We will assign students the numbers 0001-3478. All other numbers are invalid and will be ignored and we will ignore repeats of numbers. The random digits will be parsed into 4 digit numbers and valid numbers selected. We will repeat the procedure until we have an appropriate number for our sample.
> Use Table B, beginning at line 105 , to select the first five students in the sample.

Solution: The vertical "pipes" designate the parsed numbers. The underlined numbers are valid. The others (including repeated numbers) are ignored. We will stop after finding 5 valid numbers.

4711| 9112| 3264| 7257| 7007| 1837| 5071| 9635| 9404| 1230| \(5859 \mid\) 6428| 5304| 2669| 5907| 3626| 3076|

The students numbered \(1230,1837,2669,3076\) and 3264 would be the first five students selected for inclusion in the questionnaire.

\section*{Possible Solutions:}
1. Categorical: gender, eye color, birth date, handedness, favorite delivery pizza

Quantitative: height, sleep, soda consumed, ACT scores, GPA, \#s of honors, pulse rate
2. don't know some answers, may lie, may not do arithmetic correct
3. In our culture, more likely to underestimate their true weight.
4. Almost any.
5. favorite pizza place, eye color, gender etc. (if combined with rest of class)
6. Probably ACT scores
\begin{tabular}{|l|ll|}
\hline \multicolumn{2}{|c|}{ Activity's Alignment } \\
\hline CONTENT & MA3 & Data analysis \\
\hline PROCESS & \(1.2 \quad\) Conduct research \\
\hline DOK & 2 & Skill/concept \\
\hline \begin{tabular}{l} 
INSTRUCTIONAL \\
STRATEGIES
\end{tabular} & Summarizing and note taking \\
\hline
\end{tabular}

\section*{Learning Activity \#2:}

Vocabulary Sort and Notes
Take the student pages with the definitions and examples. Cut the boxes apart and place them in the appropriate box that matches up with the term, definitions, and examples

See Appendix
\begin{tabular}{|l|ll|}
\hline \multicolumn{3}{|c|}{ Assessment's Alignment } \\
\hline CONTENT & MA3 & Data analysis \\
\hline PROCESS & 1.6 & Discover and evaluate relationships \\
\hline DOK & 2 & Skill/concept \\
\hline \begin{tabular}{l} 
LEVEL OF \\
EXPECTATION
\end{tabular} & \multicolumn{2}{|c|}{ Mastery level \(-85 \%\)} \\
\hline
\end{tabular}

\section*{Assessment \#2:}

In late 1995, a Gallup survey reported that Americans approved sending troops to Bosnia by 46 to 40 percent. The poll did not mention that 20,000 U.S. troops were committed to go. A CBS News poll mentioned the 20,000 figure and got the opposite outcome -- a 58 to 33 percent disapproval rate. Briefly explain why the mention of the number of troops would cause such a big difference in the poll results.
\(>\) Write the name for the kind of bias that is at work here.
\(>\) Explain the bias.

\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Student Resources } & \multicolumn{1}{c|}{ Teacher Resources } \\
\hline The Practice of Statistics & \begin{tabular}{l} 
The Practice of Statistics; Yates, Moore, Starnes; Freeman; ©2003; \\
ISBN \# 0-7167-4773-1
\end{tabular} \\
& \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ Identity Equity and Readiness } \\
\hline Gender Equity & & Technology Skills & \\
\hline Racial/Ethnic Equity & & Research/Information & \\
\hline Disability Equity & & Workplace/Job Prep & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Content Area: Mathematics & Course: AP Statistics & Strand: Data and Probability 5 \\
\hline
\end{tabular}

Learner Objectives: Students will sample and experiment by planning and conducting a study.

\section*{Concepts: C: Plan and conduct experiments}
\begin{tabular}{|c|c|}
\hline Students Should Know & Students Should Be Able to \\
\hline \begin{tabular}{l}
- Characteristics of a well-designed and well-conducted experiment \\
- Treatments, control groups, experimental units, random assignments, and replication \\
- Sources of bias and confounding, including placebo effect and blinding \\
- Differences between completely randomized design, randomized block design, including matched pairs design including uses of each
\end{tabular} & \begin{tabular}{l}
- Design an experiment (IIC) \\
- Randomly assign subjects to treatments (IIC)
\end{tabular} \\
\hline
\end{tabular}

\section*{Instructional Support}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{ Student Essential Vocabulary } \\
\hline Data & Parameter & Population & Sample & Statistic(s) & Variability \\
\hline Random & Simulation & Bias & Independence & Association & Causation \\
\hline Statistically Significant & Prediction & Explanatory & Lurking Variables & Response & Blinding \\
\hline Blocking & Confounding & Common Response & Control & Double Blind & Experiment \\
\hline Experimental Units & Factor & Level & Matched Pairs & Observational Study & Placebo \\
\hline Placebo Effect & Prospective & Randomization & Replication & Retrospective & Single Blind \\
\hline Subjects & Treatment & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Sample Learning Activities & Sample Assessments \\
\hline Learning Activity \#1 : & Assessment \#1: \\
\hline \begin{tabular}{l}
Rolling Down the River \\
A farmer has just cleared a new field for corn. It is a unique plot of land in that a river runs along one side. The corn looks good in some areas of the field but not others. The farmer is not sure that harvesting the field is worth the expense. He has decided to harvest 10 plots and use this information to estimate the total yield. Based on this estimate, he will decide whether to harvest the remaining plots.
\end{tabular} & \begin{tabular}{l}
A medical study of heart surgery investigates the effect of a drug called a beta-blocker on the pulse rate of the patient during surgery. The pulse rate will be measured at a specific point during the operation. The investigators will use 20 patients facing heart surgery as subjects. You have a list of these patients, numbered 1 to 20 , in alphabetical order. \\
\(>\) Outline as an algorithm (paragraph form) or in diagram form a randomized experimental design for this study.
\end{tabular} \\
\hline \begin{tabular}{l}
Sampling: \\
Convenience Sample \\
Simple Random Sample \\
Stratified Sample - Vertical \\
Stratified Sample - Horizontal
\end{tabular} & Solution: Answers may vary. We will assign potential patients the numbers 01-20. All other numbers are invalid and will be ignored and we will ignore repeats of numbers. The random digits will be parsed into 2 digit numbers and valid numbers selected until we have 10 subjects who will receive the beta-blockers. The others will receive no beta blockers. After the procedure we will compare the pulse rates during surgery of the two groups. The \\
\hline 1. You have looked at four different methods of choosing plots. Is there a reason, other than convenience, to choose one method over another? & "pipes" designate the parsed numbers. The underlined numbers are valid. The others (including repeated numbers) are ignored. We will stop after finding 10 valid numbers. \\
\hline 2. How did your estimates vary according to the different sampling methods you used? & 20| 63| \(92|31| 85|59| 22|51| 81|92| 74|79| 77|\underline{04 \mid ~} \mathbf{0 6 |} 63| 68|55| 65|55| 97 \mid\) \\
\hline 3. Compare your results to someone else in the class. Were your & \(50|45| 66|55| 79|31| 97|\underline{01 \mid} 70| 51|00| 28|33| 74|35| 79|37| \underline{19} \mid \underline{07|-80| 06 \mid}\) \\
\hline results similar? & \(20|25| 37|38| 26|47| 81|20| 25|04| 49|76| 13|88| 94|00| 17|24| 01|15| 82 \mid\) \\
\hline 4. Pool the results of all students for the mean yields from the simple random samples and make a class box plot. Repeat for means from & \(23|44| 91|75| 76|75| 40|73| 70|13| 43|\underline{12 \mid} 50| 45|79| 20|95| 26|53| 53|68|\) 12| \(00|43| 69|10| 73 \mid\) \\
\hline
\end{tabular}
vertical strata and from horizontal strata. Compare the class box plots for each sampling method. What do you see?
5. Which sampling method should you use? Why do you think this method is best?
6. What was the actual yield of the farmer's field? How did the box plots relate to this actual value?

\section*{Solution:}
1. One needs to choose a method that will give the best estimate of the yield. This can be affected by factors that cannot be controlled: e.g. the placement of the river. That's why one shouldn't choose the ten plots chosen by the farmer.
2. The student will see that the farmer's sample yields a very low estimate compared to the other methods used.
3. Comparing results with a peer helps the student verify that the sampling was done correctly. This does not mean the students will have the same sample, but each student should use the same process
drawing a sample for a given method. Some methods will produce
highly variable results while others are much more consistent.
4. The variability of the means of the sample yields, as shown by the length of the box plot and the width of the middle \(50 \%\), will reduce drastically once the student has stratified appropriately. Thus the strata that are effective are the vertical ones, in which the values in each stratum are similar. This stratification reduces the variation in the sample means since the values chosen for a particular stratum vary little from sample to sample relative to the variability in the population.
5. Vertical stratification should be used since the sample would then include higher yielding plots as well as lower yielding ones.
6. The actual yield is 5004 . The class box plot for the means
resulting from the vertical stratification should be centered near 5004/100 or about 50.

\section*{See Appendix}

The patients numbered \(01,04,06,07,10,12,13,15,19 \& 20\) are the ones then that will receive the beta blockers during surgery.

By diagram:

\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Assessment's Alignment } \\
\hline CONTENT & MA3 \(\quad\) Data analysis \\
\hline
\end{tabular}
\begin{tabular}{|l|ll|}
\hline \multicolumn{2}{|c|}{ Activity's Alignment } \\
\hline CONTENT & MA3 & Data analysis \\
\hline PROCESS & 1.6 & Discover and evaluate relationships \\
\hline DOK & 2 & Skill/concept \\
\hline \begin{tabular}{l} 
INSTRUCTIONAL \\
STRATEGIES
\end{tabular} & Generating and testing hypotheses \\
\hline
\end{tabular}

\section*{Learning Activity \#2:}

\section*{When Does Blocking Help?}

A set of 24 dogs ( 6 of each of four breeds; 6 from each of four veterinary clinics) has been randomly selected from a population of dogs older than eight years of age whose owners have permitted their inclusion in a study. Each dog will be assigned to exactly one of three treatment groups. Group "Ca" will receive a dietary supplement of calcium, Group "Ex" will receive a dietary supplement of calcium and a daily exercise regimen, and Group "Co" will be a control group that receives no supplement to the ordinary diet and no additional exercise. All dogs will have a bone density evaluation at the beginning and end of the one-year study. (The bone density is measured in Houndsfield units by using a CT scan.) The goals of the study are to determine (i) whether there are different changes in bone density over the year of the study for the dogs in the three treatment groups; and if so, (ii) how much each treatment influences that change in bone density.

Mechanics of the Simulations
The activity consists of three separate simulations, each involving its own particular process for allocating the dogs to the treatment groups.

\section*{See Appendix}
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Activity's Alignment } \\
\hline CONTENT & MA3 \(\quad\) Data analysis \\
\hline
\end{tabular}
\begin{tabular}{|l|lc|}
\hline PROCESS & 1.6 & Discover and evaluate relationships \\
\hline DOK & 2 & Skill/concept \\
\hline \begin{tabular}{l} 
LEVEL OF \\
EXPECTATION
\end{tabular} & Mastery level \(-75 \%\) \\
\hline
\end{tabular}

\section*{Assessment \#2:}

You are trying to determine the difference in dexterity levels between the dominant hand and the non-dominant hand. You decide to do this by having a person place washers one at a time using only one hand on a peg. You count how many the person is able to place on a peg in a 60 second time period.
> Explain how you would design a matched pairs experiment to test the difference in dexterity levels between the dominant and non-dominant hand.
> What purpose does it serve to make this a matched-pairs design?

Solution: Answers may vary. Select a large sample of subjects, determine their dominant hand. Then randomly assign half to use their dominant hand first in the 60 second interval and then the other half will use their non-dominant hand first. You will take the difference in the counts for the dominant hand minus the non-dominant hand to determine the average increase in dexterity. The "matched-pairs" is used to reduce variability within the individual counts due to general dexterity not associated with "handedness".
\begin{tabular}{|l|ll|}
\hline \multicolumn{3}{c|}{ Assessment's Alignment } \\
\hline CONTENT & MA3 & Data analysis \\
\hline PROCESS & 3.5 & Reason logically (inductive/deductive) \\
\hline DOK & 3 & Strategic Thinking \\
\hline
\end{tabular}
\begin{tabular}{l}
\begin{tabular}{|l|ll|l|l|}
\hline PROCESS & 1.3 & Design/conduct investigations & & \begin{tabular}{l} 
LEVEL OF \\
EXPECTATION
\end{tabular} \\
\hline DOK & 3 & Strategic thinking & \\
\hline \begin{tabular}{l} 
INSTRUCTIONAL \\
STRATEGIES
\end{tabular} & 3.1 & Identify and define problems & \\
\hline \multicolumn{4}{|c|}{ Student Resources } & \\
\hline The Practice of Statistics & \begin{tabular}{l} 
The Practice of Statistics; Yates, Moore, Starnes; Freeman; ©2003; \\
ISBN \# 0-7167-4773-1
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ Identity Equity and Readiness } \\
\hline Gender Equity & & Technology Skills & \\
\hline Racial/Ethnic Equity & & Research/Information & \\
\hline Disability Equity & & Workplace/Job Prep & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Content Area: Mathematics & Course: AP Statistics & Strand: Data and Probability 6 \\
\hline
\end{tabular}

Learner Objectives: Students will anticipate patterns by exploring random phenomena using probability and simulation.

\section*{Concepts: A: Interpret probability}
\begin{tabular}{|c|c|}
\hline Students Should Know & Students Should Be Able to \\
\hline \begin{tabular}{l}
- Interpreting probability, including long-run relative frequency interpretation \\
"Law of Large Numbers" concept \\
- Effect of linear transformation of a random variable
\end{tabular} & \begin{tabular}{l}
- Use the addition rule, multiplication rule, conditional probability, and independence to calculate probabilities (IIIA3) \\
- Identify discrete random variables and their probability distributions, including binomial and geometric (IIIA4)
\end{tabular} \\
\hline
\end{tabular}
- Perform simulation of random behavior and probability distributions (IIIA5)
- Calculate mean (expected value) and standard deviation of a random variable, and perform linear transformation of a random variable (IIIA6)

\section*{Instructional Support}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Student Essential Vocabulary} \\
\hline Data & Parameter & Population & Sample & Statistic(s) & Variability \\
\hline Random & Simulation & Bias & Random Selection & Independence & Statistically Significant \\
\hline Transformations & Extrapolation & Proportion & 68-95-99.7 Rule & Degrees of Freedom & Distribution \\
\hline Dotplot & Histogram & Expected Value & Mean & Normal & Outliers \\
\hline Shape & Skew & Spread & Standard Deviation & Stem-and-Leaf & Symmetric \\
\hline Uniform & Variance & Central Limit Theorem & Model & Addition Rule & Complement \\
\hline \multicolumn{2}{|l|}{Assumptions and Conditions} & Conditional Probability & Complement & Event & Multiplication Rule \\
\hline \multicolumn{2}{|l|}{Binomial Distribution Model} & \multicolumn{2}{|l|}{Continuous Random Variable} & \multicolumn{2}{|l|}{Discrete Random Variable} \\
\hline \multicolumn{2}{|l|}{Disjoint (Mutually Exclusive)} & \multicolumn{2}{|l|}{Geometric Distribution Model} & Law of Large Numbers & Outcome \\
\hline \multicolumn{2}{|l|}{Normal Approximation to the Binomial} & \multicolumn{2}{|l|}{Probability Distribution} & Sample Space & Tree Diagram \\
\hline \multicolumn{2}{|c|}{Probability Model} & \multicolumn{2}{|l|}{Random Variable} & Trial & Venn Diagram \\
\hline \multicolumn{2}{|l|}{Conditions and Assumptions} & & & & \\
\hline
\end{tabular}

\section*{Sample Learning Activities}

\section*{Learning Activity \#1 :}

\section*{See Appendix}

After looking at several popular games of chance, it is now your turn to develop your own game using probability. You may work alone or with one partner. The following requirements need to be met:
Step One:
1. Decide on a game that you would like to develop.

\section*{Sample Assessments}

\section*{Assessment \#1:}

Blood is categorized by two components, type and Rh factor. The following pie chart represents the percentage of the American population that falls into each category. Use the chart to answer the probability questions that follow.
2. Test your ideas through simulations of your game.
3. Will you be able to answer all of the questions in Step Two for your game?
4. Share your thoughts with instructor before proceeding.

Step Two: Prepare your written project including each of the following:
1. Name your game.
2. Describe the rules of your game.
3. Play your game, recording the results, and determine the experimental probability of winning. "Playing of your game" may be done with the actual materials, or simulated with the calculator. Play a realistic number of times in order to feel somewhat confident about your experimental probability.
4. Determine the theoretical probability of winning your game.
5. If it costs \(\$ 2\) to play your game, what must be the payoff in order to make this a fair game?
6. Find two other individuals from our class to play your game.

Provide them with the proper forms or worksheets to record their results.
7. How do these results (in problem 6) compare to the
experimental and theoretical probabilities that you found in problems 3 and 4 above? Is there a significant difference?
8. Are there any improvements or alterations that you think should be made to your game?

Possible solution:
Game name: Snake-eyes
You roll two dice-If you get 2 ones, you win. Anything else, you lose.

\(>\) What is the \(\mathrm{P}(\mathrm{O}\) or A\()\) ?

Solution: \(0.45+0.40=0.85\)
\(>\) What is the \(\mathrm{P}(\operatorname{not} \mathrm{O})\) ?

Solution: 0.55
> What is the \(\mathrm{P}(\mathrm{A}\) or \(\mathrm{Rh}+)\) ?
Solution: \(0.40+0.86-0.350 .91\)

Experimental probability: Done using the ProbSim application on the calculator: \(\frac{3}{201}=0.0149\)

Theoretical probability: \(\frac{1}{36}=0.0278\)
Using the Theoretical probability of winning the probability distribution would be set up as follows:
\begin{tabular}{lll} 
Outcome & X & \(\mathrm{P}(\mathrm{X})\) \\
2 & \(? ? ?\) & \(1 / 36\) \\
Not 2 & \(-\$ 2\) & \(35 / 36\)
\end{tabular}

Since this must be a "fair game", the outcome (mean) should be zero.
Therefore
\(x\left(\frac{1}{36}\right)+-2\left(\frac{35}{36}\right)=0\)
and solving for x gives us
\(x=70\)
The payout would have to be \(\$ 70\) for this to be a fair game.
\begin{tabular}{|l|ll|}
\hline \multicolumn{3}{|c|}{ Activity's Alignment } \\
\hline CONTENT & MA3 & Data analysis \\
\hline PROCESS & 3.3 & Apply one's own strategies \\
\hline DOK & 3 & Strategic Thinking \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline INSTRUCTIONAL & Homework and practice \\
STRATEGIES & \\
\hline
\end{tabular}

\section*{Learning Activity \#2:}

\section*{Thumbtack Tossing Activity See Appendix}
1. Define relative frequency probability.
2. Define subjective probability.
3. Explain the Law of Large Numbers.
4. What is the probability that a thumbtack lands point up?
5. Make a table and line graph illustrating your data.
6. As the number of tosses increased, what happened to the relative frequency of the thumbtacks landing up?
7. From the data collected, what is the probability that a thumbtack will land point up?
8. How many tosses do you feel is needed to get an accurate probability for a thumbtack landing point up?
9. How was the Law of Large Numbers used in this activity?

Sample Solution:
See Appendix
\begin{tabular}{|l|ll|}
\hline \multicolumn{2}{|c|}{ Assessment's Alignment } \\
\hline CONTENT & MA3 & Data analysis \\
\hline PROCESS & 3.3 & Apply one's own strategies \\
\hline DOK & 2 & Skill/concept \\
\hline \begin{tabular}{l} 
LEVEL OF \\
EXPECTATION
\end{tabular} & \multicolumn{2}{|c|}{ Mastery level \(-90 \%\)} \\
\hline
\end{tabular}

\section*{Assessment \#2:}

According to a recent study, \(32 \%\) of American women will become pregnant before they turn 20 . Of those that become pregnant, \(85 \%\) will not receive a college degree, while \(56 \%\) of women who don't become pregnant before they turn 20 will get a college degree. Let A be an American woman getting pregnant before the age of 20 and B be a woman receiving a college degree. Use this information for the following problems.
\(>\) Create a tree diagram representing the information given.
Solution

\(>\) Find the probability that a randomly selected American woman gets pregnant before the age of 20 and gets a college degree.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{}} & \multicolumn{2}{|l|}{Solution. \(0.32 * 0.15=0.048\)} \\
\hline & & \multicolumn{2}{|l|}{What is the probability that a randomly chosen American woman receives a college degree?} \\
\hline & & Solution: 0 & \(32 * 0.15+0.68 * 0.56=0.4288\) \\
\hline & & \multicolumn{2}{|l|}{What is the probability that a woman got pregnant before the age of 20 , given that she received a college degree?} \\
\hline \multicolumn{2}{|r|}{Activity's Alignment} & \multicolumn{2}{|l|}{\multirow[b]{3}{*}{Solution:
\[
\frac{0.048}{0.4288}=0.1119
\]}} \\
\hline CONTENT & MA3 Data analysis & & \\
\hline PROCESS & 1.10 Apply information, ideas and skills & & \\
\hline DOK & 2 Skill/concept & & Assessment's Alignment \\
\hline INSTRUCTIONAL & Homework and practice & CONTENT & MA3 Data analysis \\
\hline & & PROCESS & 1.10 Apply information, ideas and skills \\
\hline & & DOK & 3 Strategic Thinking \\
\hline & & LEVEL OF EXPECTATION & Mastery level-85\% \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Student Resources } & \multicolumn{1}{c|}{ Teacher Resources } \\
\hline The Practice of Statistics & \begin{tabular}{l} 
The Practice of Statistics; Yates, Moore, Starnes; Freeman; ©2003; \\
\\
\\
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ Identity Equity and Readiness } \\
\hline Gender Equity & & Technology Skills & \\
\hline Racial/Ethnic Equity & & Research/Information & \\
\hline Disability Equity & & Workplace/Job Prep & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Content Area: Mathematics & Course: AP Statistics & Strand: Data and Probability 7 \\
\hline Learner Objectives: Students will anticipate patterns by exploring random phenomena using probability and simulation. \\
\hline Concepts: \(\quad\) B: Combine independent random variables \\
\begin{tabular}{|l|l|}
\hline Students Should Know & • \begin{tabular}{l} 
Calculate mean and standard deviation for sums and differences of \\
independent random variables (IIIB2)
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{Instructional Support}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{ Student Essential Vocabulary } \\
\hline Data & Sample & Statistic(s) & Variability & Random & Random Selection \\
\hline Transformations & Mean & \(68-95-99.7\) Rule & Degrees of Freedom & Spread & Standard Deviation \\
\hline Variance & Model & Central Limit Theorem & Complement & Trial & Sample Space \\
\hline \multicolumn{2}{|c|}{ Conditions and Assumptions } & \multicolumn{2}{|c|}{ Discrete Random Variable } & Law of Large Numbers & Probability \\
\hline \multicolumn{2}{|c|}{ Assumptions and Conditions } & Normal Approximation to the Binomial & Probability Distribution & Probability Model \\
\hline \multicolumn{2}{|c|}{ Continuous Random Variable } & \multicolumn{2}{|c|}{ Transforming Data } & Independence & Addition Rule \\
\hline \multicolumn{2}{|c|}{ Rultiplication Rule } & Outcome & & Event \\
\hline
\end{tabular}

\begin{tabular}{|l|l|}
\hline DOK & \(2 \quad\) Skill/concept \\
\hline \begin{tabular}{l} 
INSTRUCTIONAL \\
STRATEGIES
\end{tabular} & Cues, questions, and advance organizers \\
\hline
\end{tabular}

\section*{Learning Activity \#2:}

A car dealer finds that the probability of selling \(0,1,2,3,4\), or 5 hybrid cars in any week is \(.32, .28, .15, .11, .08\), and .06 respectfully. Construct a table to represent the probability distribution for the random variable X , the number of hybrid cars sold each day.

What is the mean or expected value for the random variable X ?
What is the variance for the random variable X ?
What is the standard deviation for the random variable X ?
What is the probability that the dealer sells at least 2 hybrid cars in any week?
According to the information provided, what is the value of \(\mathrm{P}(\mathrm{X}<4)\) ?
Solution:
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline x & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline \(\mathrm{P}(\mathrm{x})\) & .32 & .28 & .15 & .11 & .08 & .06 \\
\hline
\end{tabular}

What is the mean or expected value for the random variable X ?
\(\mu^{x}=1.53\)
What is the variance for the random variable X ?
2
\(\sigma^{2}=(1.5196)^{2}=2.3091\)
\begin{tabular}{|l|ll|}
\hline PROCESS & 1.6 & Discover/evaluate relationships \\
\hline DOK & 2 & Skill/concept \\
\hline \begin{tabular}{l} 
LEVEL OF \\
EXPECTATION
\end{tabular} & Mastery level - \\
\hline
\end{tabular}

\section*{Assessment \#2:}

A grain elevator and shipper has a fleet of tractor trailer trucks that carry corn that are normally distributed with a mean of \(46,000 \mathrm{lbs}\) and a standard deviation of 2800 lbs .

One of their customers cannot take full shipments daily because of storage concerns. They take shipments that are normally distributed with a mean of \(30,000 \mathrm{lbs}\) and a standard deviation of 4200 .
\(>\) If the corn left over on the truck is then returned to the grain elevator, what is the mean amount of corn returned to the elevator?

Solution: \(\quad \mu_{\text {truck-delivery }}=\mu_{\text {truck }}-\mu_{\text {delivery }}=46000-30000=16000 \mathrm{lbs}\).
\(>\) What is the standard deviation of the corn returned to the elevator above?

What is the standard deviation for the random variable X ?
\(\sigma^{x}=1.5196\)
What is the probability that the dealer sells at least 2 hybrid cars in any week? \(\mathrm{P}(\mathrm{x} \geq 2)=.15+.11+.08+.06=.4\)

According to the information provided, what is the value of \(\mathrm{P}(\mathrm{X}<4)\) ?
\(\mathrm{P}(\mathrm{X}<4)=.86\)
See Appendix for more activities and solutions
\begin{tabular}{|l|ll|}
\hline \multicolumn{2}{|c|}{ Activity's Alignment } \\
\hline CONTENT & MA3 & Data analysis \\
\hline PROCESS & \(3.3 \quad\) Apply one's own strategies \\
\hline DOK & \(2 \quad\) Skill/concept \\
\hline \begin{tabular}{l} 
INSTRUCTIONAL \\
STRATEGIES
\end{tabular} & Nonlinguistic representation \\
\hline
\end{tabular}
\begin{tabular}{|l|ll|}
\hline \multicolumn{2}{|c|}{ Assessment's Alignment } \\
\hline CONTENT & MA3 & Data analysis \\
\hline PROCESS & 3.3 & Apply one's own strategies \\
\hline DOK & 2 & Skill/concept \\
\hline \begin{tabular}{l} 
LEVEL OF \\
EXPECTATION
\end{tabular} & Mastery level \(-80 \%\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Student Resources } & \multicolumn{1}{c|}{ Teacher Resources } \\
\hline The Practice of Statistics & \begin{tabular}{l} 
The Practice of Statistics; Yates, Moore, Starnes; Freeman; ©2003; \\
ISBN \# 0-7167-4773-1
\end{tabular} \\
\hline
\end{tabular}

\section*{Identity Equity and Readiness}
\begin{tabular}{|l|l|l|l|}
\hline Gender Equity & & Technology Skills & \\
\hline Racial/Ethnic Equity & & Research/Information & \\
\hline Disability Equity & & Workplace/Job Prep & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Content Area: Mathematics & Course: AP Statistics & Strand: Data and Probability 8 \\
\hline Learner Objectives: Students will anticipate patterns by exploring random phenomena using probability and simulation. \\
\hline
\end{tabular}

Concepts: C: Interpret the normal distribution
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Students Should Know } & \multicolumn{1}{c|}{ Students Should Be Able to } \\
\hline\(\bullet\) Properties of the normal distribution & \(\bullet\)\begin{tabular}{l} 
Use tables of normal distribution (IIIC2) \\
\(\bullet\) \\
\\
\end{tabular} \\
\hline
\end{tabular} \begin{tabular}{l} 
Use the normal distribution as a model for measurements (IIIC3) \\
Calculate probabilities and cut-off points in normal distributions
\end{tabular}

\section*{Instructional Support}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{ Student Essential Vocabulary } \\
\hline Data & Sample & Statistic(s) & Variability & Random & Random Selection \\
\hline Transformations & Mean & 68-95-99.7 Rule & Degrees of Freedom & Standard Deviation & Variance \\
\hline Central Limit Theorem & Spread & \begin{tabular}{c} 
Discrete Random \\
\\
Variable
\end{tabular} & Complement & Law of Large Numbers & Probability \\
\hline Assumptions and Conditions & Model & \multicolumn{2}{|c|}{ Continuous Random Variable } & Probability Distribution & Probability Model \\
\hline Conditions and Assumptions & Transforming Data & Parameter & Population & Extrapolation \\
\hline Statistically Significant & Dotplot & Proportion & Distribution & Histogram & Normal \\
\hline Outliers & Shape & Skew & Stem-and-Leaf & Symmetric & Z-Score \\
\hline Quantitative Variable & Percentile & Standardized Value & Quartile & \multicolumn{2}{|c|}{ Standard Normal Model } \\
\hline Normal Probability Plot & Tails & & & \multicolumn{4}{|c|}{} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Sample Learning Activities } & \multicolumn{1}{c|}{ Sample Assessments } \\
\hline Learning Activity \#1 : & Assessment \#1: \\
Men's heights are normally distributed with a mean of 69 in. and a \\
standard deviation of 2.8 in. Early missions for NASA required their \\
astronauts to be between 65 in and 68 inches tall. What proportion of \\
men would meet the height requirement?
\end{tabular} \(\left.\begin{array}{l}\text { A grain elevator and shipper has a fleet of tractor trailer trucks that carry } \\
\text { corn that are normally distributed with a mean of 46,000 lbs and a } \\
\text { standard deviation of 2800 lbs. }\end{array}\right\}\)\begin{tabular}{l} 
If you must purchase special permits for any load over 50,000 \\
lbs, what is the proportion of trucks that would require such \\
permits?
\end{tabular}

\begin{tabular}{|l|l|}
\hline INSTRUCTIONAL & Homework and practice \\
STRATEGIES & \\
\hline
\end{tabular}

\section*{Learning Activity \#2:}

ACT scores are normally distributed with a mean of 20.8 and a standard deviation of 5.6. A certain elite university wishes to consider only the top \(2 \%\) of students based on ACT scores.

What score must you achieve in order to be considered at this university?

Solution:
\[
\mathrm{z} \text {-score for the top } 2 \% \text { is } 2.054 \text {. Therefore: }
\]
\(2.054=\frac{x-20.8}{5.6} \Rightarrow x=20.8+2.054(5.6)=32.3024\)
This indicates you would need to score at least 33 on the ACT to be considered by this university.

By calculator: invnorm(.98,20.8,5.6) \(\approx 32.3009\)
\begin{tabular}{|l|ll|}
\hline \multicolumn{3}{|c|}{ Activity's Alignment } \\
\hline CONTENT & MA3 & Data analysis \\
\hline PROCESS & \(1.10 \quad\) Apply information, ideas and skills \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline DOK & \(3 \quad\) Strategic Thinking \\
\hline LEVEL OF & Mastery level \(-75 \%\) \\
EXPECTATION & \\
\hline
\end{tabular}

\section*{Assessment \#2:}

ACT scores are normally distributed with a mean of 20.8 and a standard deviation of 5.6.
\(>\) What is the probability of someone randomly selected getting at least a 24 on the ACT?

Solution:
\(P(x>24)=P\left(\frac{24-20.8}{5.6}\right)=0.2839\)
\(>\) If a university were to accept only the top \(1 \%\) of its applicants based upon their ACT scores, what score would be required in order to be considered for admission into this university?

Solution: The z -score for the top \(1 \%\) is 2.326 .Therefore
\(\frac{x-20.8}{5.6}=2.326\)
so \(x=2.326 * 5.6+20.8=33.8256\)

You would need to get a 34 or higher to be considered at this university for admission based on your ACT score.
\begin{tabular}{|l|ll|}
\hline \multicolumn{2}{|c|}{ Assessment's Alignment } \\
\hline CONTENT & MA3 \(\quad\) Data analysis \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline DOK & 2 Skill/concept & \multirow[t]{2}{*}{PROCESS} & 1.10 Apply information, ideas and skills \\
\hline \multirow[t]{3}{*}{\[
\begin{array}{|l}
\hline \text { INSTRUCTIONAL } \\
\text { STRATEGIES } \\
\hline
\end{array}
\]} & \multirow[t]{3}{*}{Identifying similarities and differences} & & \\
\hline & & DOK & 2 Skill/concept \\
\hline & & LEVEL OF EXPECTATION & Mastery level-80\% \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Student Resources } & \multicolumn{1}{c|}{ Teacher Resources } \\
\hline The Practice of Statistics & \begin{tabular}{l} 
The Practice of Statistics; Yates, Moore, Starnes; Freeman; ©2003; \\
ISBN \# 0-7167-4773-1
\end{tabular} \\
& \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ Identity Equity and Readiness } \\
\hline Gender Equity & & Technology Skills & \\
\hline Racial/Ethnic Equity & & Research/Information & \\
\hline Disability Equity & & Workplace/Job Prep & \\
\hline
\end{tabular}

Learner Objectives: Students will anticipate patterns by exploring random phenomena using probability and simulation.

\section*{Concepts: D: Interpret sampling distributions}
\begin{tabular}{|c|c|}
\hline Students Should Know & Students Should Be Able to \\
\hline - \(\quad\) Central Limit Theorem
- \(\quad\) Properties of t-distribution
- \(\quad\) Properties of Chi-square distribution & \begin{tabular}{l}
- Describe sampling distribution of a sample proportion (IIID1) \\
- Describe sampling distribution of a sample mean (IIID2) \\
- Apply Central Limit Theorem (IIID3) \\
- Describe sampling distribution of a difference between two independent sample proportions (IIID4) \\
- Describe sampling distribution of a difference between two independent sample means (IIID5) \\
- Perform a simulation of sampling distributions (IIID6) \\
- Use tables of t -distribution and Chi-square (IIID7, IIID8) \\
- Calculate probabilities and cut-offs points in t-distributions and Chi-square distributions (IIID7, IIID8)
\end{tabular} \\
\hline
\end{tabular}

\section*{Instructional Support}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{ Student Essential Vocabulary } \\
\hline Variablity & Data & Transformations & \(68-95-99.7\) Rule & Degrees of Freedom & Standard Deviation \\
\hline Random Selection & Sample & Variance & Model & Central Limit Theorem & Spread \\
\hline Assumptions and Conditions & Statistic(s) & Complement & Mean & Discrete Random Variable & Probability \\
\hline \multicolumn{2}{|c|}{ Conditions and Assumptions } & Continuous Random Variable & Law of Large Numbers & Probability Distribution \\
\hline Normal Approximation to the Binomial & Probability Model & Independence & Transforming Data & Parameter \\
\hline Statistically Significant & Population & Extrapolation & Proportion & Distribution & Dotplot \\
\hline Histogram & Normal & Outliers & Shape & Skew & Stem-and-Leaf \\
\hline Symmetric & Z Score & Quantitative Variable & Percentile & Standardized Value & Quartile \\
\hline Standard Normal Model & Tails & Simulation & Bias & Chi-square Distribution & Component Values \\
\hline Goodness of Fit & Cell & Interval & Pooling & Sample Mean Model & Sampling Distribution \\
\hline Sample Proportion Model & Test & Sampling Variability & T Distribution & Test of Homogeneity & Test of Independence \\
\hline
\end{tabular}
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ Sample Learning Activities } \\
\hline Learning Activity \#1: \\
From a large bin of multi-colored beads, there are 18\% that are red. \\
Stur
\end{tabular} Students are asked to scoop out a cup-full of beads and calculate out the proportion that is red. While the individual proportions were all different, the distribution for my two classes is shown below. The distribution is at least somewhat "normal" (a bit skewed right with an outlier to the right). The "peak" (or center) does appear around 18\% however. We also talked about how the outlier may have occurred by not properly shaking the bin after a sample was taken and therefore the reds may have occurred at a higher rate since they may not have been randomly distributed throughout the bin.


See Appendix
Suppose that you and your lab partner flip a coin 20 times and you calculate the proportion of tails to be 0.7 . Your partner seems surprised at these results and suspects that the coin is not fair.
> Write a brief statement that describes why you either agree or disagree with him.

Solution: Answers may vary. I would disagree with him. Because of sampling variability, 0.7 is definitely possible. Using the binomial probability, the chances of getting 0.7 tails is 0.0370
\(>\) This problem extends the previous problem. You flip the coin 20 more times and calculate the proportion of tails. You repea the process again and again until you have calculated 25 proportions \(\hat{p}\). Your lab partner then plots a histogram of the results on his TI-83 and overlays a box plot for the same data shown. What would these results suggest? Explain clearly.

\begin{tabular}{|l|ll|}
\hline \multicolumn{2}{|c|}{ Activity's Alignment } \\
\hline CONTENT & MA3 & Data analysis \\
\hline PROCESS & \(1.10 \quad\) Apply information, ideas and skills \\
\hline DOK & \(2 \quad\) Skill/concepts \\
\hline \begin{tabular}{l} 
INSTRUCTIONAL \\
STRATEGIES
\end{tabular} & Nonlinguistic representation \\
\hline
\end{tabular}

\section*{Learning Activity \#2:}

\section*{German Tanks}

Follow the script for the lesson:
Draw 7 numbers from the bag and return them when completed. Decide an estimate of N , the number of "tanks" in the population, and also a clear statement of the method you used. The method should be applicable to any set of seven randomly selected numbers.

Groups that work quickly should be encouraged to come up with a second or even third method and estimate.

Write estimate on the board, along with a short formula describing how they arrived at the estimate. If different groups come up with the same method, list the method only once with the different estimates it produces listed beside it.

Say, "The true value of N is 342 . So which of these methods is best?"
Answer: the method that happened to produce an estimate closest to 342 , but some students are likely to pick up on the fact that the method may have just

Solution: Because the process is repeated many times, the distribution of samples indicates that the "mean" proportion of tails is more likely to be 0.8 or higher. Therefore, it does appear that the coin is unfair.
\begin{tabular}{|l|ll|}
\hline \multicolumn{2}{|c|}{ Assessment's Alignment } \\
\hline CONTENT & MA3 & Data analysis \\
\hline PROCESS & 1.10 & Apply information, ideas and skills \\
\hline DOK & 2 & Skill/concepts \\
\hline \begin{tabular}{l} 
LEVEL OF \\
EXPECTATION
\end{tabular} & \multicolumn{2}{|c|}{ Mastery level \(-80 \%\)} \\
\hline
\end{tabular}

\section*{Assessment \#2:}

A survey asks a random sample of 1500 adults in Ohio if they support an increase in the state sales tax from \(5 \%\) to \(6 \%\), with the additional revenue going to education. Let \(p\) denote the proportion in the sample that says they support the increase. Suppose that \(40 \%\) of all adults in Ohio support the increase.
\(>\) If \(\hat{p}\) is the proportion of the sample who support the increase what is the mean of \(\hat{p}\) ?

Solution: \(\mu_{H}=p=0.4\)
\(>\) What is the standard deviation of \(\hat{p}\) ?

Solution:
\[
\sigma_{H}=\sqrt{\frac{p(1-p)}{n}}=\sqrt{\frac{0.4 * 0.6}{1500}} \approx 0.0126
\]
gotten "lucky" with a particular sample. In fact, the question above contains an undefined word that should be discussed with the class: best. What do we mean by the "best" method? The one that's exactly right most often? The one that's within 50 tanks of being right most often?
(Many statisticians think of the "best" estimator as the one that, among all unbiased methods, has the smallest standard deviation.)

Lead a discussion to get at these points:
- You can't judge a method ("estimator") by how it performs on one random sample only. You have to judge it by how it performs over many random samples. In other words, you have to look at the distribution of its estimates over many random samples. Simulation (especially with technology) is useful for looking at that distribution.
- It is desirable that an estimator be unbiased. That is, you would like for the mean of its estimates over many random samples to equal the parameter (N) being estimated.
- It is desirable that an estimator have low variability, perhaps measured by standard deviation. That is, you would like the estimates it produces over many random samples to be relatively close to one another.
- The combination of unbiasedness and low variability makes an estimator that comes close to the desired target for a large number of possible random samples.

Remember that the ultimate goal of the estimator is to estimate a parameter given a single random sample. Since they only get one shot, they want their method to be one that works well for many possible random samples, thus minimizing their risk of being far from correct. The ability of an estimator to work well for many different random samples is sometimes referred to as its robustness.

Students will likely want to know what the British mathematicians did. They used the statistic that has the minimal variance among all unbiased estimators, which for this activity would be \((8 / 7)\) max, where max is the largest value in the sample. For this one, point out that distribution need not
\(>\) Explain why you can use the formula for the standard deviation of \(\hat{p}\) in this setting.

Solution: The population of Ohio is more than 15000 , or ten times our sample size.
> Check that you can use the normal approximation for the distribution of \(\hat{p}\).
\(n * \nmid=1500 * 0.4=600 \geq 10\)
and
Solution: \(\quad n * \$=1500 * 0.6=900 \geq 10\)
\(>\) Find the probability that \(\hat{p}\) takes a value between 0.37 and 0.43.

Solution:
\(P(0.37<\mu<.43)=P\left(\frac{0.37-.4}{\sqrt{\frac{0.4^{*} 0.6}{1500}}}<z<\frac{0.43-.4}{\sqrt{\frac{0.4 * 0.6}{1500}}}\right)=0.9823\)
be normal or even symmetric: all that is desirable is that they come close to the target for many samples.

Students trade lists, draw new samples, or use randInt(1,342), and try their method again on a new list to see if their method estimates well with a different sample.

Run the Fathom Simulation based on the formulas presented by the class to show the distribution of each described statistic over many simulations. Each simulation represents the computation of the statistic when a sample of 7 observations is taken from the integers 1 to 342 . The vertical line in each case is placed at 342-the true value that the statistic is shooting for.

Discuss the SOCS for each distribution.
What makes an estimator "unbiased"? Compare distributions for each estimator. Which one would the Allied forces prefer? Why?

Sample Solutions:
See Appendix
\begin{tabular}{|l|ll|}
\hline \multicolumn{2}{|c|}{ Activity's Alignment } \\
\hline CONTENT & MA3 & Data analysis \\
\hline PROCESS & 1.6 & Discover/evaluate relationships \\
\hline DOK & 4 & Extended thinking \\
\hline \begin{tabular}{l} 
INSTRUCTIONAL \\
STRATEGIES
\end{tabular} & Nonlinguistic representations \\
\hline
\end{tabular}
\begin{tabular}{|l|ll|}
\hline \multicolumn{3}{|c|}{ Assessment's Alignment } \\
\hline CONTENT & MA3 & Data analysis \\
\hline PROCESS & 1.6 & Discover/evaluate relationships \\
\hline DOK & 3 & Strategic thinking \\
\hline \begin{tabular}{l} 
LEVEL OF \\
EXPECTATION
\end{tabular} & Mastery level \(-75 \%\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Student Resources } & \multicolumn{1}{c|}{ Teacher Resources } \\
\hline The Practice of Statistics & \begin{tabular}{l} 
The Practice of Statistics; Yates, Moore, Starnes; Freeman; ©2003; \\
\\
\end{tabular} \\
\hline
\end{tabular}
\(\square\)
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ Identity Equity and Readiness } \\
\hline Gender Equity & & Technology Skills & \\
\hline Racial/Ethnic Equity & & Research/Information & \\
\hline Disability Equity & & Workplace/Job Prep & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Content Area: Mathematics & Course: AP Statistics & Strand: Data and Probability 10 \\
\hline
\end{tabular}

Learner Objectives: Students will make statistical inferences by estimating population parameters and testing hypotheses.

\section*{Concepts: A: Determine estimation}
\begin{tabular}{|c|c|}
\hline Students Should Know & Students Should Be Able to \\
\hline \begin{tabular}{l}
- Use of properties of point estimators, including unbiasedness and variability \\
- Logic of confidence intervals, meaning of confidence level and confidence intervals, and properties of confidence intervals \\
- Relationship between confidence interval and two-sided alternative
\end{tabular} & \begin{tabular}{l}
- Estimate population parameters using margins of error (IVA1) \\
- Construct and interpret large sample confidence interval for a proportion (IVA4) \\
- Construct and interpret large sample confidence interval for a difference between two proportions (IVA5) \\
- Construct and interpret confidence interval for a mean (IVA6) \\
- Construct and interpret confidence interval for a difference between two means (unpaired and paired) (IVA7)
\end{tabular} \\
\hline
\end{tabular}
- Construct and interpret confidence interval for the slope of a least-squares regression line (IVA8)

\section*{Instructional Support}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Student Essential Vocabulary} \\
\hline Data & Sample & Statistic(s) & Variability & \multirow[t]{2}{*}{Random} & Random Selection \\
\hline Transformations & 68-95-99.7 Rule & \multirow[t]{2}{*}{Central Limit Theorem} & Mean & & \multirow[t]{2}{*}{Standard Deviation} \\
\hline Variance & Model & & \multicolumn{2}{|l|}{Assumptions and Conditions} & \\
\hline \multicolumn{2}{|l|}{Conditions and Assumptions} & \multicolumn{2}{|l|}{Continuous Random Variable} & \multicolumn{2}{|l|}{Discrete Random Variable} \\
\hline \multicolumn{2}{|l|}{Law of Large Numbers} & \multicolumn{2}{|l|}{Normal Approximation to the Binomial} & Probability & Probability Distribution \\
\hline Probability Model & Transforming Data & Independence & Parameter & Population & Statistically Significant \\
\hline Extrapolation & Proportion & Distribution & Dotplot & Histogram & Normal \\
\hline Outlier(s) & Shape & Skew & Stem-and-Leaf & Symmetric & Quantitative Variable \\
\hline Standardized Value & Z Score & Standard Norm & al Model & Tails & Chi-square Distribution \\
\hline Interval & Pooling & Sample Mean Model & Sample P & portion Model & Sampling Distribution \\
\hline Sampling Distr & tion Models & Sampling Variability & T Distribution & Test & Causation \\
\hline Experiment & Matched Pairs & Conditional Probability & Confidence Level & Boxplot & Alpha \\
\hline Confidence Interval & Critical Value & Hypothesis & Margin of Error & Null & Reject \\
\hline Retain & Significant Level & Standard Error & Two-sided & 1 Proportion Z-interval & 2 Proportion Z-interval \\
\hline 5 Number Summary & One Sam & le T-interval & One Sa & le Z-interval & Paired T-interval \\
\hline Two Sampl & -interval & Normal Proba & ility Plot & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Sample Learning Activities & \multicolumn{7}{|c|}{Sample Assessments} \\
\hline Learning Activity \#1 : & \multicolumn{7}{|l|}{Assessment \#1:} \\
\hline A researcher wants to estimate the mean weight of children of a particular age. Assume the distributions of weights of children at a specific age are roughly normal with a standard deviation of 3 pounds. The researcher selects a SRS of 25 children and finds their mean weight to be 62 pounds. What is & \multicolumn{7}{|l|}{National Fuelsaver Corporation manufactures the Platinum Gasaver, a device they claim "may increase gas mileage by \(22 \%\)." Here are the percent changes in gas mileage for 15 identical vehicles, as presented in one of the company's advertisements:} \\
\hline & 48.3 & 46.9 & 46.8 & 44.6 & 40.2 & 38.534 .6 & 33.7 \\
\hline & 28.7 & 28.7 & 24.8 & 10.8 & 10.4 & \(6.9-12.4\) & \\
\hline
\end{tabular}

P Population
\(\mu=\) Mean weight of children of this age
A There are surely more than \(10(25)=250\) children of some age A SRS is stated
We are told \(\sigma=3\)
Since population weight are \(\approx\) normal, we can use Z scores/normal approximations

N
I \(\quad \mathrm{Z}\) interval
\(62 \pm 1.645 \cdot \frac{3}{\sqrt{25}}\)
\(\mathrm{x}=62\)
\(\mathrm{n}=25\)
C I'm \(90 \%\) confident that the mean weight of children of this age is between 61.013 lbs and 62.987 lbs

Construct a \(90 \%\) confidence interval to estimate the mean fuel savings in the population of all such vehicles. Follow the Inference Toolbox.

Solution: Let be the true population mean percent change in gas mileage.

Conditions:
1. SRS (assumed although probably should be questioned given that it is an advertisement for the company in question)
2. It is reasonable to assume that more than 150 cars will use the device.
3. The distribution seems only slightly skewed left, so the sample size of 15 should be sufficient to overcome the slight skew.

\(\bar{x}=28.77 \& \mathrm{~s}=17.766\)
df=14

Therefore
\[
\bar{x} \pm t_{90,14} \frac{s}{\sqrt{n}}=28.77 \pm 1.753 * \frac{17.766}{\sqrt{15}}=(20.687,36.846)
\]

Conclusion: If the data can be trusted, then we are \(90 \%\) confident the true mean fuel savings for all vehicles would be somewhere between \(20.687 \%\) and \(36.846 \%\).


We are told \(\sigma=3\), and that these weights are approximately normally distributed

N Z test
\[
\begin{aligned}
& z=\frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}}} \\
& z=\frac{62-58}{\frac{2}{\sqrt{25}}}=6.67
\end{aligned}
\]
\(\mathrm{O} \quad \mathrm{P}\) value \(\mathrm{P}\left(\mathrm{z}=6.67\right.\) or greater assuming \(\mathrm{H}^{0}\) is true)
\(=2.6 \times 10^{-11}\)

M Because this P value is so small \((<\sigma=0.05)\) I'll reject \(\mathrm{H}^{0}\).
S There is significant evidence that the mean weight of children this age has changed
\begin{tabular}{|l|ll|}
\hline \multicolumn{3}{|c|}{ Activity's Alignment } \\
\hline CONTENT & MA3 & Data analysis \\
\hline PROCESS & 1.2 & Conduct research \\
\hline DOK & 3 & Strategic thinking \\
\hline \begin{tabular}{l} 
INSTRUCTIONAL \\
STRATEGIES
\end{tabular} & Generating and testing hypotheses \\
\hline
\end{tabular}
those with criminal records between those with normal and abnormal chromosomes.

Conditions:
1. SRS (assumed)
2. The population of men in Denmark \(>40960\)
3. \(n_{1} * \mu_{1}=4096 * 0.093=381 \geq 5\)
\(n_{1} * \mu_{1}=4096 * 0.907=3715 \geq 5\)
\(n_{2} * p_{2}=28 * 0.286=8 \geq 5\)
\(n_{2} * \mu_{2}=28 * 0.714=20 \geq 5\)
\((0.093-0.286) \pm 1.960 * \sqrt{\frac{(0.093)(0.917)}{4096}+\frac{(0.286)(0.714)}{28}}=(-0.3603,-0.0251)\)

Conclusion: We are \(95 \%\) confident that the true difference in population proportions of those with criminal records between those with normal and abnormal chromosomes are from \(-0.3603 \&-0.0251\). This means that men with normal chromosomes are about \(2.5 \%\) to \(36 \%\) LESS LIKELY to have criminal records than those with abnormal chromosomes. Since 0 is NOT in the interval, that suggests that there is a significant difference in the proportion of men with criminal records with respect to normal and abnormal chromosomes
\begin{tabular}{|l|ll|}
\hline \multicolumn{2}{c|}{ Assessment's Alignment } \\
\hline CONTENT & MA3 & Data analysis \\
\hline PROCESS & 3.5 & Reason logically \\
& & \\
\hline DOK & 3 & Strategic thinking \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline & \begin{tabular}{l} 
LEVEL OF \\
EXPECTATION
\end{tabular} & Mastery level - 75\% \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Student Resources } & \multicolumn{1}{c|}{ Teacher Resources } \\
\hline The Practice of Statistics & \begin{tabular}{l} 
The Practice of Statistics; Yates, Moore, Starnes; Freeman; ©2003; \\
ISBN \# 0-7167-4773-1
\end{tabular} \\
& \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ Identity Equity and Readiness } \\
\hline Gender Equity & & Technology Skills & \\
\hline Racial/Ethnic Equity & & Research/Information & \\
\hline Disability Equity & & Workplace/Job Prep & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Content Area: Mathematics & Course: AP Statistics & Strand: Data and Probability 11 \\
\hline \multicolumn{1}{|l|}{ Learner Objectives: Students will make statistical inferences by estimating population parameters and testing hypotheses. } \\
\hline
\end{tabular}

Concepts: B: Determine tests of significance

\section*{Students Should Know}
- Logic of significance testing, null and alternative hypotheses
- Relationship between p -value and test statistic
- Difference between one- and two-sided tests
- Relationship among Type I and Type II errors and power
- Relationship between confidence interval and two-sided alternative

\section*{Students Should Be Able to}
- Perform and interpret large sample test for a proportion (IVB2)
- Perform and interpret large sample test for a difference between two proportions (IVB3)
- Perform and interpret test for a mean (IVB4)
- Perform and interpret test for a difference between two means (unpaired and paired) (IVB5)
- Perform and interpret Chi-square test for goodness of fit, homogeneity of proportions, and independence (one- and two-way tables) (IVB6)
- Perform and interpret test for the slope of a least-squares regression line (IVB7)

\section*{Instructional Support}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{ Student Essential Vocabulary } \\
\hline Data & Sample & Statistic(s) & Variability & Random & Random Selection \\
\hline Transformations & \(68-95-99.7\) Rule & Degrees of Freedom & Mean & Spread & Standard Deviation \\
\hline Variance & Model & Central Limit Theorem & Assumptions and Conditions & Complement \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Conditions and Assumptions} & \multicolumn{2}{|l|}{Continuous Random Variable} & \multicolumn{2}{|r|}{Discrete Random Variable} \\
\hline \multicolumn{2}{|l|}{Law of Large Numbers} & \multicolumn{2}{|l|}{Normal Approximation to the Binomial} & Probability & Probability Distribution \\
\hline Probability Model & Transforming Data & Independence & Parameter & Population & Statistically Significant \\
\hline Extrapolation & Proportion & Distribution & Dotplot & Histogram & Normal \\
\hline Outlier(s) & Shape & Skew & Stem-and-Leaf & Symmetric & Quantitative Variable \\
\hline Standardized Value & Z Score & Standard Norm & al Model & Tails & Chi-square Distribution \\
\hline Interval & Pooling & Sample Mean Model & Sample P & ortion Model & Sampling Distribution \\
\hline \multicolumn{2}{|l|}{Sampling Distribution Models} & Sampling Variability & T Distribution & Test & Causation \\
\hline Experiment & Matched Pairs & Conditional Probability & Confidence Level & Boxplot & Alpha \\
\hline Confidence Interval & Critical Value & Hypothesis & Margin of Error & Null & Reject \\
\hline Retain & Significant Level & Standard Error & Two-sided & Cell & Component Values \\
\hline Goodness of Fit & \multicolumn{2}{|r|}{Test of Homogeneity} & \multicolumn{2}{|r|}{Test of Independence} & Association \\
\hline Explanatory & Lurking Variables & Prediction & Response & Response Variable & Expected Value \\
\hline \multicolumn{2}{|l|}{Coefficient of Determination ( \(\mathrm{R}^{\wedge} 2\) )} & \multicolumn{2}{|l|}{Correlation Coefficient (r)} & Direction & Exponential Model \\
\hline Form & Intercept & \multicolumn{2}{|l|}{Least Squares Regression (LSRL)} & Line of Best Fit & Linear Model \\
\hline Power Model & Predicted Value & Regression & Residual & Regression Outliers & Residual Plot \\
\hline Scatterplot & \multicolumn{2}{|r|}{Slope (Rate of Change)} & Strength & Categorical Variable & Conditional Distribution \\
\hline Contingency Table & Frequency Table & 1 Proportion Z-test & Alternative & 2 Proportion Z-test & One Sample T-test \\
\hline One Sample Z-test & P Value & Paired T-test & Power & Residual St & ard Deviation \\
\hline \multicolumn{2}{|l|}{Standard Error of the Slope} & Test Statistic & \multicolumn{2}{|l|}{T-test for Regression Slope} & Two Sample T-test \\
\hline Type I Error & Type II Error & \multicolumn{2}{|l|}{Normal Probability Plot} & Ladder of Powers & Logarithmic Model \\
\hline Monotonicity & Subset & & & & \\
\hline
\end{tabular}


\[
t=\frac{\left(\bar{x}_{b}-\bar{x}_{f}\right)-\left(\mu_{b}-\mu_{f}\right)}{\sqrt{\frac{s_{b}^{2}}{n_{b}}+\frac{s_{f}^{2}}{n_{f}}}}
\]

T Test statistic or CI calculated
\[
t=\frac{(13.3-11.5)-(0)}{\sqrt{\frac{1.7^{2}}{37}+\frac{1.8^{2}}{41}}}=4.541
\]

O Obtain a \(p\) value
\[
\mathrm{P}=1.036 \mathrm{E}-\mathrm{S}
\]

M Make a decision
Since \(p=1.036 \mathrm{E}-\mathrm{S}<0.05\), I'1l reject Ho
S State a conclusion
There is evidence that the mean blood hemoglobin level of breast-fed children is higher than that of formula-fed children.
\begin{tabular}{|l|ll|}
\multicolumn{2}{|c|}{ Assessment's Alignment } \\
\hline CONTENT & MA3 & Data analysis \\
\hline PROCESS & \(1.10 \quad\) Apply information, ideas and skills \\
\hline DOK & 3 & Strategic thinking \\
\hline \begin{tabular}{l} 
LEVEL OF \\
EXPECTATION
\end{tabular} & Mastery level \(-75 \%\) \\
\hline
\end{tabular}
\begin{tabular}{|l|ll|}
\hline \multicolumn{3}{|c|}{ Activity's Alignment } \\
\hline CONTENT & MA3 & Data analysis \\
\hline PROCESS & 1.2 & Conduct research \\
\hline DOK & 3 & Strategic thinking \\
\hline
\end{tabular}

\section*{Assessment \#2:}

In a study of heart surgery, one issue was the effect of drugs called beta-blockers on the pulse rate of patients during surgery. The available

\section*{INSTRUCTIONAL Generating and testing hypotheses STRATEGIES}

\section*{Learning Activity \#2:}

Record your distribution of colors below for your peanut M\&Ms
\begin{tabular}{|c|c|c|c|c|c|}
\hline Red & Orange & Yellow & Green & Blue & Brown \\
\hline & & & & & \\
\hline
\end{tabular}

Give the class totals from the plain M\&M activity before and the class totals for the peanut M\&Ms today. Record those below.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\cline { 2 - 8 } \multicolumn{1}{c|}{} & Red & Orange & Yellow & Green & Blue & Brown & Totals \\
\hline Plain & & & & & & & \\
\hline Peanut & & & & & & & \\
\hline
\end{tabular}

Mars Inc. claims the distribution of peanut M\&Ms is \(12 \%\) Red, \(23 \%\) Orange, \(15 \%\) Yellow, \(15 \%\) Green, \(23 \%\) Blue, and \(12 \%\) Brown.
1. Perform a \(\chi 2\) Goodness of Fit test on the class data to test their claim.
2. Why would you not conduct this test on your individual bags?
3. Perform an appropriate test on the class data to see if the distributions between plain chocolate and peanut M\&Ms are different.
4. Is the test for \(\# 3\) above a \(\chi 2\) Test for Homogeneity or a \(\chi 2\) Test for Independence (no association)?
subjects were divided at random into two groups of 30 patients each. One group received a beta-blocker; the other group received a placebo. The pulse rate of each patient at a critical point during the operation was recorded. The treatment group had mean 65.2 and standard deviation 7.8. For the control group, the mean was 70.3 and the standard deviation was 8.3.
\(>\) Perform an appropriate significance test to see if beta-blockers reduce the pulse rate. Follow the Inference Toolbox.

Solution: Let \({ }^{\mu_{1}}\) be the true population mean pulse rate of those on beta blockers in the treatment group and \(\mu_{2}\) be the true population mean pulse rate of those who are not on beta blockers, so \(\mu_{1}-\mu_{2}\) will be the difference in the pulse rates of the two groups.
\(H_{0}: \mu_{1}=\mu_{2}\) or \(\mu_{1}-\mu_{2}=0\)
\(H_{a}: \mu_{1}<\mu_{2}\) or \(\mu_{1}-\mu_{2}<0\)

Conditions:
1. SRS selection (assumed)
2. Potential heart surgery patients at least 300 .
3. Although the distribution is unknown, 30 patients per group is sufficiently large to overcome any potential skew or outliers.
\(t=\frac{\left(\overline{x_{1}}-\overline{x_{2}}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}=\frac{\left(\overline{x_{1}}-\overline{x_{2}}\right)}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}=\frac{(65.2-70.3)}{\sqrt{\frac{7.8^{2}}{30}+\frac{8.3^{2}}{30}}}=-2.453\)

Sample solution:
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline & Red & Orange & Yellow & Green & Blue & Brown & Totals \\
\hline Plain & 76 & 104 & 90 & 89 & 109 & 61 & 529 \\
\hline Peanut & 130 & 301 & 223 & 263 & 329 & 174 & 1420 \\
\hline
\end{tabular}
1. Since the distributions for peanut M\&Ms is \(12 \%\) Red, \(23 \%\) Orange, \(15 \%\) Yellow, \(15 \%\) Green, \(23 \%\) Blue, and \(12 \%\) Brown, the expected values for the peanut M\&Ms listed above in line one are 63.48 each for Red and Brown, 121.67 each for Orange and Blue, and 79.35 each for Yellow and Green.
\(H_{0}\) : All proportions are the same as reported by Mars.
\(H_{a}\) : At least one proportion is significantly different.
\[
\begin{aligned}
& \chi^{2}=\sum \frac{(\text { observed }- \text { expected })^{2}}{\text { expected }} \\
& =\frac{(76-63.48)^{2}}{63.48}+\ldots+\frac{(61-63.48)^{2}}{63.48}=9.0547
\end{aligned}
\]
and
Therefore: \(\quad P\left(\chi^{2}>9.0547\right)=0.0597\)
Conclusion: If there is no difference from the stated proportions by Mars, then results like ours would occur \(5.97 \%\) of the time by chance. Therefore, there is some evidence (significant at \(10 \%\) but not at \(5 \%\) ) to reject Mars claim. There does appear to be at least one color that is significantly different. A look at the \(\chi^{2}\) component values indicates Orange with a component value of 2.5662 is lower than it should be.
3. We would not conduct this test on individual bags because individual bags would fail the conditions necessary to perform this test.
\(H_{0}\) : There is no difference in the distribution of plain and peanut M\&M
\(P(t<-2.453)=0.0086\)

Conclusion: If there is indeed no difference in heart rates between the two groups (i.e. \(\mu_{1}=\mu_{2}\) ), then results like ours would occur only about 9 times in 1000 by chance. Therefore, we conclude there is significantly strong evidence (significant at \(=0.01\) ) to reject that there is no difference in favor of the idea that beta-blockers do indeed significantly reduce pulse rates during heart surgery.
\(H_{a}\) :There is at least one value in the distributions between plain and peanut M\&Ms that is different.

The observed and expected matrices are given below.
\(O=\left[\begin{array}{cccccc}76 & 104 & 90 & 89 & 109 & 61 \\ 130 & 301 & 223 & 263 & 329 & 174\end{array}\right]\)
\(E=\left[\begin{array}{cccccc}55.913 & 109.926 & 84.955 & 95.540 & 118.883 & 63.784 \\ 150.087 & 295.074 & 228.045 & 256.460 & 319.117 & 171.216\end{array}\right]\)
\(\chi^{2}=\sum \frac{(\text { observed }- \text { expected })^{2}}{\text { expected }}\)
\(=\frac{(76-55.913)^{2}}{55.913}+\ldots+\frac{(174-171.216)^{2}}{171.216}=12.663\)
and
\(P\left(\chi^{2}>12.663\right)=0.0267\)

Conclusion: If there is no difference in the distribution of plain and peanut M\&Ms, then our results would occur about \(2.67 \%\) of the time by random chance. Therefore, there is fairly strong evidence (significant @ \(5 \%\), not significant @ \(1 \%\) ) to reject that they have the same distributions. Based upon the \(\chi^{2}\) component value, the red peanut M\&Ms appear to be overrepresented if the distributions were the same.

\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Student Resources } & \multicolumn{1}{c|}{ Teacher Resources } \\
\hline The Practice of Statistics & \begin{tabular}{l} 
The Practice of Statistics; Yates, Moore, Starnes; Freeman; ©2003; \\
ISBN \# 0-7167-4773-1
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ Identity Equity and Readiness } \\
\hline Gender Equity & & Technology Skills & \\
\hline Racial/Ethnic Equity & & Research/Information & \\
\hline Disability Equity & & Workplace/Job Prep & \\
\hline
\end{tabular}```


[^0]:    PART I: Organizing Data: Looking for Patterns and Departures from Patterns
    Chapter 1: Exploring Data (12 days-one test)
    1.1: Displaying Distributions with Graphs (including all types as referenced in Course Description)
    1.2: Describing Distributions with Numbers

    Chapter 2: The Normal Distributions (8 days-one test)
    2.1: Density Curves and the Normal Distributions
    2.2: Standard Normal Calculations

    Chapter 3: Examining Relationships (15 days-one test)
    3.1: Scatterplots
    3.2: Correlation
    3.3: Least-Squares Regression

    Chapter 4: More on Two Variable Data (14 days-one test)
    4.1: Transforming Relationships
    4.2: Cautions about Correlation and Regression
    4.3: Relations in Categorical Data

    PART II: Producing Data: Samples, Experiments, and Simulations
    Chapter 5: Producing Data (10 days-one test) Gummy Bear Project (see attached)
    5.1: Designing Samples
    5.2: Designing Experiments
    5.3: Simulating Experiments

    PART III: Probability: Foundations of Inference

